首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of charged dust grains with nonlinear vortical structures in the Earth’s atmosphere is analyzed. Certain aspects of the atmosphere?ionosphere interaction, in particular, mechanisms for the appearance of dust grains at ionospheric altitudes, are discussed. It is shown that, at certain altitudes, there are regions in the wavenumber space in which conditions leading to the excitation of acoustic?gravity waves are satisfied. The interaction of nonlinear acoustic?gravity waves with dust grains of meteoric origin at ionospheric altitudes, which leads to the mixing and redistribution of dust grains over the region where vortices exist, is investigated. The possibility of formation of vertical and horizontal dust flows in dusty ionospheric plasma as a result of modulational instability is analyzed. The dynamics of dust grains in dust devils frequently arising in the atmosphere above well-heated surfaces is modeled. The vortical structure of such a dust devil is characterized by a reduced pressure in the center, which facilitates the lifting of small dust grains from the surface. The formulated model is used to calculate the trajectories of dust grains in dust devils with allowance for the influence of the electric field generated in the vortex by colliding dust grains. The calculations show that dust devils play an important role in the transport of dust grains.  相似文献   

2.
The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in a discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles.  相似文献   

3.
The process of decay of dust structures formed of polydisperse grains injected into an RF discharge is investigated. The dust grain velocities after switching-off of the discharge are measured. The number density, dimensions, and residual charges of dust grains are estimated from the balance of forces acting on the grains after discharge is switched off.  相似文献   

4.
The properties are studied of dusty plasma structures formed in a glow discharge in a dust trap above the lower wall of the side branch of the discharge tube, near the turn of the discharge channel. The dust structure is three-dimensional with a characteristic size of up to 3 cm and contains about 30000 dust grains. Depending on the experimental conditions, dust-acoustic, dissipative, and charge-gradient instabilities can develop in such a structure. When using highly polydisperse dust grains of arbitrary shape, the effect of selection of dust grains by the plasma with respect to their mean size and shape was discovered. This effect was studied quantitatively in two gases by using the method of gathering and extraction of the dust grains levitating in the trap. The morphology of the dust structures was determined from the pair correlation functions of the horizontal cross sections containing long-range order peaks and elements of a hexagonal lattice. Stratification of a uniform structure accompanied by convective rotation caused by the grain charge gradient was observed. Applications of the dusty plasma created in this type of device are discussed.  相似文献   

5.
Results are presented from experimental studies of the dynamics of dust grains charged via photoemission under microgravity conditions. The experiments are performed with bronze grains exposed to solar radiation on board the Mir space station. The velocity distribution, temperature, mean charge, and friction and diffusion coefficients of dust grains are determined. An analysis of the data obtained shows that the polarization caused by the separation of opposite charges can significantly affect the transport processes in a two-component dusty plasma consisting of dust grains and the electrons emitted by them.  相似文献   

6.
Results are presented from Monte Carlo calculations of the electric charge of dust grains in a plasma produced during the slowing down of the radioactive decay products of californium nuclei in neon. The dust grain charging is explained for the first time as being due to the drift of electrons and ions in an external electric field. It is shown that the charges of the grains depend on their coordinates and strongly fluctuate with time. The time-averaged grain charges agree with the experimental data obtained on ordered liquidlike dust structures in a nuclear-track plasma. The time-averaged dust grain charges are used to carry out computer modeling of the formation of dynamic vortex structures observed in experiments. Evidence is obtained of the fact that the electrostatic forces experienced by the dust grains are potential in character.  相似文献   

7.
The dynamics of dust ion-acoustic solitons is analyzed in a wide range of dusty plasma parameters. The cases of both a positive dust grain charge arising due to the photoelectric effect caused by intense electromagnetic radiation and a negative grain charge established in the absence of electromagnetic radiation are considered. The ranges of plasma parameters and Mach numbers in which ??conservative?? (nondissipative) solitons can exist are determined. It is shown that, in dusty plasma with negatively charged dust grains, both compression and rarefaction solitons can propagate, whereas in plasma with positively charged dust grains, only compression solitons can exist. The evolution of soliton-like compression and rarefaction perturbations is studied by numerically solving the hydrodynamic equations for ions and dust grains, as well as the equation for dust grain charging. The main dissipation mechanisms, such as grain charging, ion absorption by dust grains, momentum exchange between ions and dust grains, and ion-neutral collisions are taken into account. It is shown that the amplitudes of soliton-like compression and rarefaction perturbations decrease in the course of their evolution and their velocities (the Mach numbers) decrease monotonically in time. At any instant of time, the shape of an evolving soliton-like perturbation coincides with the shape of a conservative soliton corresponding to the current value of the Mach number. It is shown that, after the interaction between any types of soliton-like perturbations, their velocities and shapes are restored (with a certain phase shift) to those of the corresponding perturbations propagating without interaction; i.e., they are in fact weakly dissipative solitons.  相似文献   

8.
A multifluid MHD model is applied to study the magnetic field dynamics in a dusty plasma. The motion of plasma electrons and ions is treated against the background of arbitrarily charged, immobile dust grains. When the dust density gradient is nonzero and when the inertia of the ions and electrons and the dissipation from their collisions with dust grains are neglected, we are dealing with a nonlinear convective penetration of the magnetic field into the plasma. When the dust density is uniform, the magnetic field dynamics is described by the nonlinear diffusion equations. The limiting cases of diffusion equations are analyzed for different parameter values of the problem (i.e., different rates of the collisions of ions and electrons with the dust grains and different ratios between the concentrations of the plasma components), and some of their solutions (including self-similar ones) are found. The results obtained can also be useful for research in solid-state physics, in which case the electrons and holes in a semiconductor may be analogues of plasma electrons and ions and the role of dust grains may be played by the crystal lattice and impurity atoms.  相似文献   

9.
The second part of the review on dust structures (the first part was published in Plasma Phys. Rep. 39, 515 (2013)) is devoted to experimental and theoretical studies on the stability of structures and their formation from the initially uniform dusty plasma components. The applicability limits of theoretical results and the role played by nonlinearity in the screening of dust grains are considered. The importance of nonlinearity is demonstrated by using numerous laboratory observations of planar clusters and volumetric dust structures. The simplest compact agglomerates of dust grains in the form of stable planar clusters are discussed. The universal character of instability resulting in the structurization of an initially uniform dusty plasma is shown. The fundamental correlations described in the first part of the review, supplemented with effects of dust inertia and dust friction by the neutral gas, are use to analyze structurization instability. The history of the development of theoretical ideas on the physics of the cluster formation for different types of interaction between dust grains is described.  相似文献   

10.
Results are presented from the experimental studies and numerical simulations of the behavior of dust grains in the plasma of an inductive RF discharge. The experiments were carried out with neon at a pressure of 25–500 Pa and with 1.87-μm melamine formaldehyde grains. The discharge was excited by a ring inductor supplied from a generator operating at a 100-MHz frequency. The effective dust-grain interaction potential used in numerical simulations involved the spatial dependence of the grain charge on the plasma floating potential, grain-interaction anisotropy resulting from the focusing of the drift ion current by the negatively charged grains, and specific features of the shielding of the dust grains by the plasma electrons and ions recombining both in the plasma bulk and on the grain surface. The results of Monte Carlo simulations show that the dust grains form specific filament structures observed experimentally in the plasma of an inductive electrodeless discharge. __________ Translated from Fizika Plazmy, Vol. 26, No. 5, 2000, pp. 445–454. Original Russian Text Copyright ? 2000 by Zobnin, Nefedov, Sinel’shchikov, Sinkevich, Usachev, Filinov, Fortov.  相似文献   

11.
The potential of a slowly moving test charge in a positive-dust-electron plasma is calculated taking into account dust grain charge fluctuations, as well as collisions between neutral atoms and electrons and dust grains. The results should be useful for understanding the shielding in a dusty plasma sheath with levitated grains.  相似文献   

12.
The results of investigations of dust grain behavior in plasma formed by a proton beam in inert gases (He, Ar, Kr) are demonstrated. Stable ordered dust structures, namely “a plasma-dust crystal” formed of dust grains 1.0, 3.0, and 4.8 μm in diameter are obtained in the proton beam range for the first time. The mathematical model which allows for numerical simulation of crystal formation from dust grains formed by proton beam plasma is developed.  相似文献   

13.
The effect of a conducting electrode on the interaction of dust grains in an ion flow is discussed. It is shown that two grains levitating above the electrode at the same height may attract one another. This results in the instability of a dust layer.  相似文献   

14.
Plasma?dust effects in the martian atmosphere are discussed. A specific feature of the martian atmosphere is the presence of dust grains in a wide range of altitudes. Taking into account the presence of the martian ionosphere and the high conductivity of the medium at lower altitudes, the appearance of plasma systems in the martian atmosphere can be considered quite a common phenomenon. Special attention is paid to dust devils that frequently form in the martian atmosphere and can efficiently lift dust grains. The processes of dust grain charging as a result of triboelectric effect and generation of electric fields in a dust devil are discussed. The dynamics of dust grains in such a vortex is simulated with allowance for their charging and the generated electric field.  相似文献   

15.
Conditions are considered under which quasi-two-dimensional extended structures are formed consisting of charged dust grains that are suspended in a gravitational field by an external electric field. Formulas are derived that describe the relationships between the parameters of the intergrain interaction potential, the number of dust grains, and the gradients of the linear electric field of the device. A criterion is proposed that determines the onset of a new dust layer in a quasi-two-dimensional dust system.  相似文献   

16.
The formation of dusty plasma in the near-surface layer above the illuminated part of the Deimos, the satellite of Mars, due to photoelectric and electrostatic processes is analyzed. Using a physicomathematical model self-consistently describing the densities of photoelectrons and dust grains above the illuminated part of Deimos, the distribution function of photoelectrons near its surface is calculated and the altitude dependences of the electric field, as well as of the number density, charge, and size of dust grains, are determined. It is noted that, due to the lower gravity, substantially larger grains are lifted above the surface of Deimos compared to those lifted above the Moon’s surface. In this case, adhesion, which is believed to significantly hamper the detachment of dust grains from the lunar surface, plays a substantially smaller role on Deimos.  相似文献   

17.
The influence of the neutral component of the dusty ionospheric plasma on the process of dust grain charging is analyzed. Microscopic ion fluxes onto a dust grain are calculated with allowance for the interaction with the neutral components of the ionospheric plasma for both negatively and positively charged dust grains. For the latter case, which takes place in the presence of intense UV or X-ray solar radiation, the electron heating caused by the photoelectric effect is also investigated. It is found that the efficiency of electron heating depends on the density of neutral particles. The altitudes at which these effects appreciably influence the charging of different types of nano- and microscale dust grains are determined. It is shown that these effects should be taken into account in describing noctilucent clouds, polar mesosphere summer echoes, and physical phenomena involving grains of meteoric origin.  相似文献   

18.
Results of the experimental studies of the dynamics of dust grains in the plasmas of an rf capacitive discharge and a dc glow discharge are presented. The dusty plasma of a dc glow discharge was investigated in both ground-based experiments and experiments carried out under microgravity conditions (on board the Mir space station). The pair correlation function, temperature, and diffusion coefficient of dust grains are measured in a wide range of the dusty-plasma parameters. Dimensionless parameters responsible for the microscopic transport of dust-grains in a gas-discharge plasma are determined. A nonintrusive diagnostic technique for determining the dust-grain charges and screening lengths under the assumption of screened interaction between the grains is proposed. This technique is used to estimate the surface potential of dust grains of different size in a gas-discharge plasma.  相似文献   

19.
The phonon spectra of a two-layer plasma crystal are analyzed. A simple model describing nonreciprocal forces acting between dust grains is formulated. General trends in the dynamics of a single dust molecule consisting of two vertically aligned grains are described. An integral of motion analogous to energy is found in the harmonic approximation. The conditions allowing the existence of a molecular crystal for which interaction between pairs of grains weakly affects the state of an individual molecule are determined. The oscillation spectra are obtained in an explicit form.  相似文献   

20.
A review of theoretical ideas on the physics of structurization instability of a homogeneous dusty plasma, i.e., the formation of zones with elevated and depressed density of dust grains and their arrangement into different structures observed in laboratory plasma under microgravity conditions, is presented. Theoretical models of compact dust structures that can form in the nonlinear stage of structurization instability, as well as models of a system of voids (both surrounding a compact structure and formed in the center of the structure), are discussed. Two types of structures with very different dimensions are possible, namely, those smaller or larger than the characteristic mean free path of ions in the plasma flow. Both of them are characterized by relatively regular distributions of dust grains; however, the first ones usually require external confinement, while the structures of the second type can be self-sustained (which is of particular interest). In this review, they are called dust clusters and self-organized dust structures, respectively. Both types of the structures are characterized by new physical processes that take place only in the presence of the dust component. The role of nonlinearities in the screening of highly charged dust grains that are often observed in modern laboratory experiments turns out to be great, but these nonlinearities have not received adequate study as of yet. Although structurization takes place upon both linear and nonlinear screening, it can be substantially different under laboratory and astrophysical conditions. Studies on the nonlinear screening of large charges in plasma began several decades ago; however, up to now, this effect was usually disregarded when interpreting the processes occurring in laboratory dusty plasma. One of the aims of the present review was to demonstrate the possibility of describing the nonlinear screening of individual grains and take it into account with the help of the basic equations for the equilibrium between plasma components when analyzing equilibrium structures. The effect of plasma screening nonlinearity on both the diffusion processes and the forces of dust drag by plasma fluxes is analyzed. It is shown how self-organized dust structures form in these processes. In the limit of very small dust grain charges, the forces acting on the dusty plasma components and the set of basic equations for stationary dust structures (with allowance for nonlinear screening) take a standard form. New qualitative effects, such as the suppression of diffusion due to ion scattering from dust grains and the formation of structures of different configurations, are described. A detailed comparison with previous results is performed. It is shown that the solution of basic nonlinear equations for dust structures yields new qualitative effects. A number of new effects to be studied in future dusty plasma experiments with the formation of structures in spherical chambers are predicted (it is assumed that diffusion will play a significant role under microgravity conditions). Recent ground-based experiments, as well as experiments carried out onboard the International Space Station, directly confirm the nonlinear character of screening and the significant role played by this nonlinearity in the structurization of dusty plasma. Experiments on the formation of structures consisting of smaller dust grains within structures formed of larger grains are discussed. It is shown that those experiments can be interpreted only using the concept of nonlinear screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号