首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Two dermatan sulphate-containing proteoglycans from bovine sclera were examined by rotary shadowing and electron microscopy, and the results were compared with previous biochemical findings. Both the large iduronate-poor proteoglycan (PGI) and the small iduronate-rich proteoglycan (PGII) possessed a globular proteinaceous region. Whereas PGI had a branched extension from the globular region, with five to eight side chains attached to it, PGII had only a single tail, which was of glycosaminoglycuronan. PGII aggregated via globular-region interactions, which were much diminished by reduction and alkylation. PGI aggregated via side chains and globular-region interactions. Although a few PGI aggregates were large, and similar to the hyaluronan-cartilage proteoglycan aggregates [Weidemann, Paulsson, Timpl, Engel & Heinegård (1984) Biochem. J. 224, 331-333], hyaluronan did not cause enhanced aggregation. PGII is very similar in shape to the small cartilage chondroitin sulphate proteoglycan, whereas PGI somewhat resembles the large cartilage chondroitin sulphate proteoglycan, although with many fewer glycosaminoglycan side chains, and probably only one globular region as opposed to two in the cartilage proteoglycan.  相似文献   

2.
The ultrastructure of embryonic chick cartilage proteoglycan core protein was investigated by electron microscopy of specimens prepared by low angle shadowing. The molecular images demonstrated a morphological substructural arrangement of three globular and two linear regions within each core protein. The internal globular region (G2) was separated from two terminally located globular regions (G1 and G3) by two elongated strands with lengths of 21 +/- 3 nm (E1) and 105 +/- 22 nm (E2). The two N-terminal globular regions, separated by the 21-nm segment, were consistently visualized in well spread molecules and showed little variation in the length of the linear segment connecting them. The E2 segment, however, was quite variable in length, and the C-terminal globular region (G3) was detected in only 53% of the molecules. The G1, G2, and G3 regions in chick core protein were 10.1 +/- 1.7 nm, 9.7 +/- 1.3 nm, and 8.3 +/- 1.3 nm in diameter, respectively. These results are similar to those described previously for proteoglycan core proteins isolated from rat chondrosarcoma, bovine nasal cartilage, and pig laryngeal cartilage (Paulsson, M., Morgelin, M., Wiedemann, H., Beardmore-Gray, M., Dunham, D., Hardingham, T., Heinegard, D., Timpl, R., and Engel, J. (1987) Biochem. J. 245, 763-772). However, a significant difference was detected between the length of the elongated strand (E2) of core proteins isolated from chick cartilage, E2 length = 105 +/- 22 nm, compared to bovine nasal cartilage, E2 length = 260 +/- 39 nm. The epitope of the proteoglycan core protein-specific monoclonal antibody, S103L, was visualized by electron microscopy, and the distance from the core protein N terminus to the S103L binding site was measured. The S103L binding site was localized to the E2 region, 111 +/- 20 nm from the G1 (N terminus) domain and 34 nm from the G3 (C terminus) domain. cDNA clones selected from an expression vector library of chicken cartilage mRNA also show this epitope to be located near the C-terminal region (R. C. Krueger, T. A. Fields, J. Mensch, and B. Schwartz (1990) J. Biol. Chem. 265, 12088-12097).  相似文献   

3.
We have determined the sequence of a partial cDNA clone encoding the C-terminal region of bovine cartilage aggregating proteoglycan core protein. The deduced amino acid sequence contains a cysteine-rich region which is homologous with chicken hepatic lectin. This lectin-homologous region has previously been identified in rat and chicken cartilage proteoglycan. The bovine sequence presented here is highly homologous with the rat and chicken amino acid sequences in this apparently globular region. A region containing clusters of Ser-Gly sequences is located N-terminal to the lectin homology domain. These Ser-Gly-rich segments are arranged in tandemly repeated, approx. 100-residue-long, homology domains. Each homology domain consists of an approx. 75-residue-long Ser-Gly-rich region separated by an approx. 25-residue-long segment lacking Ser-Gly dipeptides. These dipeptides are arranged in 10-residue-long segments in the 100-residue-long homology domains. The shorter homologous segments are tandemly repeated some six times in each 100-residue-long homology domain. Serine residues in these repeats are potential attachment sites for chondroitin sulphate chains.  相似文献   

4.
Aggregates formed by the interaction of cartilage proteoglycan monomers and fragments thereof with hyaluronate were studied by electron microscopy by use of rotary shadowing [Wiedemann, Paulsson, Timpl, Engel & Heinegård (1984) Biochem. J. 224, 331-333]. The differences in shape and packing of the proteins bound along the hyaluronate strand in aggregates formed in the presence and in the absence of link protein were examined in detail. The high resolution of the method allowed examination of the involvement in hyaluronate binding of the globular core-protein domains G1, G2 and G3 [Wiedemann, Paulsson, Timpl, Engel & Heinegård (1984) Biochem. J. 224, 331-333; Paulsson, Mörgelin, Wiedemann, Beardmore-Gray, Dunham, Hardingham, Heinegård, Timpl & Engel (1987) Biochem. J. 245, 763-772]. Fragments comprising the globular hyaluronate-binding region G1 form complexes with hyaluronate with an appearance of necklace-like structures, statistically interspaced by free hyaluronate strands. The closest centre-to-centre distance found between adjacent G1 domains was 12 nm. Another fragment comprising the binding region G1 and the adjacent second globular domain G2 attaches to hyaluronate only by one globule. Also, the core protein obtained by chondroitinase digestion of proteoglycan monomer binds only by domain G1, with domain G3 furthest removed from the hyaluronate. Globule G1 shows a statistical distribution along the hyaluronate strands. In contrast, when link protein is added, binding is no longer random, but instead uninterrupted densely packed aggregates are formed.  相似文献   

5.
Intravenously administered chondroitin sulphate, chemically labelled by [3H]acetylation of partially deacetylated polysaccharide, was taken up and degraded by the non-parenchymal cells of the liver. Studies using primary monolayer cultures of pure Kupffer cells, liver endothelial cells and parenchymal cells revealed that [3H]chondroitin sulphate was taken up and degraded by the liver endothelial cells only. Binding studies at 4 degrees C with [3H]chondroitin sulphate and 125I-chondroitin sulphate proteoglycan indicated that the glycosaminoglycan and the proteoglycan are recognized by the same binding sites on the liver endothelial cells. The ability of hyaluronic acid to compete with the labelled ligands for binding suggested that the binding site is identical with the recently described hyaluronate receptor on the liver endothelial cells [Smedsrød, Pertoft, Eriksson, Fraser & Laurent (1984) Biochem. J. 223, 617-626]. Fluorescein-labelled chondroitin sulphate proteoglycan accumulated in perinuclear vesicles of the liver endothelial cells, indicating that the proteoglycan is internalized and transported to the lysosomes. The finding that [3H]chondroitin sulphate and 125I-chondroitin sulphate proteoglycan were degraded by the liver endothelial cells to low-molecular-mass radioactive products suggested that both the polysaccharide chain and the core protein were catabolized by the cells.  相似文献   

6.
We have determined the sequence of a cDNA clone encoding the keratan sulfate-rich domain of the large aggregating cartilage proteoglycan core protein. The C-terminal portion of the deduced amino acid sequence is homologous to the chondroitin sulfate-rich region (domain CS1) of the rat chondrosarcoma proteoglycan, and the N-terminal portion is homologous to the second globular domain (G2) of the rat proteoglycan (Doege, K., Sasaki, M., Horigan, E., Hassell, J. R., and Yamada, Y. (1987) J. Biol. Chem. 262, 17757-17767). We could identify, inserted between these regions, a region absent in the rat proteoglycan. This domain corresponds to the keratan sulfate-enriched region of the bovine proteoglycan. It consists of a highly conserved hexapeptide motif consecutively repeated 23 times. Transfer blot analysis of genomic DNA indicated a single gene. The coding region for the keratan sulfate-enriched region was present both in human and bovine DNA, whereas the coding region for this domain appears to be absent in the rat genome. Transfer blot analysis of RNA showed that the keratan sulfate-rich region is present in proteoglycans from fetal as well as adult sources. Furthermore, RNA protection assays of RNA isolated from adult and fetal bovine articular cartilage showed that no alternative splicing occurs within this keratan sulfate-enriched region. These experiments show that the fetal bovine cartilage proteoglycan contains the keratan sulfate attachment domain, although it lacks the keratan sulfate side chains.  相似文献   

7.
Heparan sulphate and chondroitin/dermatan sulphate proteoglycans of human skin fibroblasts were isolated and separated after metabolic labelling for 48 h with 35SO4(2-) and/or [3H]leucine. The proteoglycans were obtained from the culture medium, from a detergent extract of the cells and from the remaining ''matrix'', and purified by using density-gradient centrifugation, gel and ion-exchange chromatography. The core proteins of the various proteoglycans were identified by electrophoresis in SDS after enzymic removal of the glycosaminoglycan side chains. Skin fibroblasts produce a number of heparan sulphate proteoglycans, with core proteins of apparent molecular masses 350, 250, 130, 90, 70, 45 and possibly 35 kDa. The major proteoglycan is that with the largest core, and it is principally located in the matrix. A novel proteoglycan with a 250 kDa core is almost entirely secreted or shed into the culture medium. Two exclusively cell-associated proteoglycans with 90 kDa core proteins, one with heparan sulphate and another novel one with chondroitin/dermatan sulphate, were also identified. The heparan sulphate proteoglycan with the 70 kDa core was found both in the cell layer and in the medium. In a previous study [Fransson, Carlstedt, Cöster & Malmström (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5657-5661] it was suggested that skin fibroblasts produce a proteoglycan form of the transferrin receptor. However, the core protein of the major heparan sulphate proteoglycan now purified does not resemble this receptor, nor does it bind transferrin. The principal secreted proteoglycans are the previously described large chondroitin sulphate proteoglycan (PG-L) and the small dermatan sulphate proteoglycans (PG-S1 and PG-S2).  相似文献   

8.
The rotary-shadowing technique for molecular electron microscopy was used to study cartilage proteoglycan structure. The high resolution of the method allowed demonstration of two distinct globular domains as well as a more strand-like portion in the core protein of large aggregating proteoglycans. Studies of proteoglycan aggregates and fragments showed that the globular domains represent the part of the proteoglycans that binds to the hyaluronic acid, i.e. the hyaluronic acid-binding region juxtapositioned to the keratan sulphate-attachment region. The strand-like portion represents the chondroitin sulphate-attachment region. Low-Mr proteoglycans from cartilage could be seen as a globule connected to one or two side-chain filaments of chondroitin sulphate.  相似文献   

9.
A lambda gt11 expression library containing cDNA from total chick embryo was screened with S103L, a rat monoclonal antibody which reacts specifically with the core protein of the chick cartilage chondroitin sulfate proteoglycan. One clone was identified which produced a 220-kDa beta-galactosidase/S103L-binding fusion protein. Sequencing the entire 1.5-kilobase cDNA insert showed that it contained a single open reading frame, which encoded a portion of the proteoglycan core protein from the chondroitin sulfate domain. This was confirmed by comparison with amino acid sequence data from peptide CS-B, which was derived from the chondroitin sulfate domain (Krueger, R.C., Jr., Fields, T. A., Hildreth, J., IV, and Schwartz, N.B. (1990) J. Biol. Chem. 265, 12075-12087). Furthermore, the 3' end of the insert overlapped with 23 bases at the 5' end of the published sequence for the C-terminal globular domain (Sai, S., Tanaka, T., Kosher, R. A., and Tanzer, M. L. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 5081-5085), which oriented this clone, as well as the CS peptide, along the protein core. The cDNA insert hybridized with a 9-kilobase mRNA from sternal chondrocytes as well as a similar sized message in brain but did not hybridize to any message from rat chondrosarcoma or from undifferentiated limb bud mesenchyme. In further studies, the fusion protein as well as a cyanogen bromide fragment (70 kDa) derived from it were isolated and shown to react with S103L, indicating that cleavage at methionine residues does not disrupt the antibody recognition site. Purification and N-terminal sequencing of the antigenic CNBr fragment derived from the fusion protein revealed that its N terminus is preceded by a methionine in the fusion protein and overlaps with the N terminus of peptide CS-B. As peptide CS-B is not recognized by S103L and the C terminus of peptide CS-B lies beyond the proteoglycan portion of the antigenic CNBr fragment, the S103L epitope is either contained within the 11 amino acids preceding the N terminus of peptide CS-B or it spans the clostripain cleavage site at the origin of the N terminus of peptide CS-B.  相似文献   

10.
1. Three chondroitin sulphate components were isolated from adult bovine nasal cartilage after treatment with alkaline NaB3H. Average molecular weights of 13000, 18 600 and 28 000 were obtained for chondroitin sulphate species representing 10, 52 and 38% (w/w) of the total chondroitin sulphate respectively. Each chondroitin sulphate pool has a narrow molecular-weight distribution. 2. A proteoglycan subunit preparation, isolated from one nasal cartilage by extraction and density-gradient fractionation in dissociative solvents, partitioned on a CSCl density gradient according to size and composition. Variation of proteoglycan molecular weight across the gradient was directly related to the average chondrotin sulphate chain length, which in turn reflected the relative proportion of the three chondroitin sulphate pools in each proteoglycan fraction. Consideration of proteoglycan molecular parameters, compositions and behaviour on sedimentation leads to a proposal that nasal cartilage contains 3 distinct proteoglycan pools, each of which has a constant number of chondroitin sulphate side chains of different average molecular weight. 3. Molecular-weight distribution parameters for these proteoglycan preparations indicate that all serine residues on the protein core capable of initiating chondroitin sulphate biosynthesis are occupied and that proteoglycan polydispersity results directly from the polydispersity of the attached chondroitin sulphate component.  相似文献   

11.
The proteoglycans characterized were those isolated from the calcified matrix of mature bovine bone [Franzén & Heinegård (1984) Biochem. J. 224, 47-58]. The average molecular mass of the bone proteoglycan is 74 600 Da, determined by sedimentation-equilibrium centrifugation in 4M-guanidinium chloride. Its sedimentation coefficient (s0(20),w) is 3.04 S. The apparent Mr of its core protein is 46 000, estimated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the chondroitinase ABC-digested proteoglycan. A more likely molecular mass of the core protein is 30 000 Da, as calculated from the molecular mass and the protein content (40%) of the proteoglycan. The bone proteoglycan contains one or probably two chondroitin sulphate chains each with a molecular mass (weight-average) of 33 700 Da and several oligosaccharides both of the N-glycosidically and the O-glycosidically linked type. Antibodies against the homogeneous bone proteoglycans were raised in rabbits. An e.l.i.s.a. (enzyme-linked immunosorbent assay) method was developed that allowed specific quantification of bone proteoglycans at nanogram levels. The specificity of the antibodies was tested by using the e.l.i.s.a. method. The bone proteoglycan showed partial cross-reactivity with the small proteoglycan of cartilage. The antibodies were used to localize immunoreactivity of bone proteoglycans by indirect immunofluorescence in frozen sections of foetal bovine epiphysial growth plate. The fluorescence was entirely found in the primary spongiosa, and no fluorescence was found among the hypertrophied chondrocytes or in the region of provisional calcification.  相似文献   

12.
Purified proteoglycans extracted from pig laryngeal cartilage in 0.15 M-NaCl and 4 M-guanidinium chloride were analysed and their amino acid compositions determined. Selective modification of amino acid residues on the protein core confirmed that binding to hyaluronate was a function of the protein core, and was dependent on disulphide bridges, intact arginine and tryptophan residues, and epsilon-amino groups of lysine. Fluorescence measurement suggested that tryptophan was not involved in direct subsite interactions with the hyaluronate. The polydispersity in size and heterogeneity in composition of the aggregating proteoglycan was compatible with a structure based on a protein core containing a globular hyaluronate-binding region and an extended region of variable length also containing a variable degree of substitution with chondroitin sulphate chains. The non-aggregated proteoglycan extracted preferentially in 0.15 M-NaCl, which was unable to bind to hyaluronate, contained less cysteine and tryptophan than did other aggregating proteoglycans and may be deficient in the hyaluronate-binding region. Its small average size and low protein and keratan sulphate contents suggest that it may be a fragment of the chondroitin sulphate-bearing region of aggregating proteoglycan produced by proteolytic cleavage of newly synthesized molecules before their secretion from the cell.  相似文献   

13.
Total RNA was extracted from the cartilage tissues rat Swarm chondrosarcoma, neonatal-rat breastplate and embryonic-chicken sterna and translated in wheat-germ cell-free reactions. The core protein of the chondroitin sulphate proteoglycan subunit was identified among translation products of rat mRNA by its apparent Mr of 330 000 and by its immunoprecipitation with specific antisera prepared against rat or chicken proteoglycan antigens. The apparent Mr of the rat proteoglycan core protein is 8000-10000 less than that of the equivalent chicken cartilage core-protein product.  相似文献   

14.
Proteoglycan monomers from pig laryngeal cartilage were examined by electron microscopy with benzyldimethylalkylammonium chloride as the spreading agent. The proteoglycans appeared as extended molecules with a beaded structure, representing the chondroitin sulphate chains collapsed around the protein core. Often a fine filamentous tail was present at one end. Substructures within proteoglycan molecules were localized by incubation with specific antibodies followed by Protein A-gold (diameter 4 nm). After the use of an anti-(binding region) serum the Protein A-gold (typically one to three particles) bound at the extreme end of the filamentous region. A small proportion of the labelled molecules (10-15%) showed the presence of gold particles at both ends. A monoclonal antibody specific for a keratan sulphate epitope (MZ15) localized a keratan sulphate-rich region at one end of the proteoglycan, but gold particles were not observed along the extended part of the protein core. This distribution was not changed by prior chondroitin AC lyase digestion of the proteoglycan. Localization with a different monoclonal antibody to keratan sulphate (5-D-4) caused a change in the spreading behaviour of a proportion (approx. 20%) of the proteoglycan monomers that lost their beaded structure and appeared with the chondroitin sulphate chains projecting from the protein core. In these molecules the Protein A-gold localized antibody (5-D-4) along the length of the protein core whereas in those molecules with a beaded appearance it labelled only at one end. Labelling with either of the monoclonal antibodies was specific, as it was inhibited by exogenously added keratan sulphate. The differential localization achieved may reflect structural differences within the proteoglycan population involving keratan sulphate and the protein core to which it is attached. The results showed that by this technique substructures within proteoglycan molecules can be identified by Protein A-gold labelling after the use of specific monoclonal or polyclonal antibodies.  相似文献   

15.
A chondroitin sulphate proteoglycan capable of forming large aggregates with hyaluronic acid was identified in cultures of human glial and glioma cells. The glial- cell- and glioma-cell-derived products were mutually indistinguishable and had some basic properties in common with the analogous chondroitin sulphate proteoglycan of cartilage: hydrodynamic size, dependence on a minimal size of hyaluronic acid for recognition, stabilization of aggregates by link protein, and precipitability with antibodies raised against bovine cartilage chondroitin sulphate proteoglycan. However, they differed in some aspects: lower buoyant density, larger, but fewer, chondroitin sulphate side chains, presence of iduronic acid-containing repeating units, and absence (less than 1%) of keratan sulphate. Apparently the major difference between glial/glioma and cartilage chondroitin sulphate proteoglycans relates to the glycan rather than to the protein moiety of the molecule.  相似文献   

16.
Large and small interstitial proteoglycans were purified from different bovine tissues, i.e. cartilage, sclera, tendon, aorta, cornea, and bone. The structure of the molecules was compared using the glycerol spraying/rotary shadowing technique for electron microscopy. Large proteoglycans from sclera and tendon have a core protein with a domain structure similar to that previously reported for cartilage proteoglycans (Paulsson, M., M?rgelin, M., Wiedemann, H., Beardmore-Gray, M., Dunham, D., Hardingham, T., Heineg?rd, D., Timpl, R., and Engel, J. (1987) Biochem. J. 245, 763-772). It is comprised of a pair of globules at one end of the molecule, connected by a short extended segment, followed by a long extended domain which is terminated by a third globular domain. Large aorta proteoglycans show a somewhat different structure, with only one globular domain at each end of a long extended segment. Large sclera and aorta proteoglycans form aggregates with hyaluronate and cartilage link protein in a manner similar to that of large cartilage proteoglycans. The large proteoglycans show considerable tissue variability with regard to number, length, and spacing of glycosaminoglycan side chains. The small proteoglycans reveal a small globular core protein to which one or two glycosaminoglycans are attached. Although the main structural features do not differ, proteoglycans of the S1 class have an average glycosylation close to two glycosaminoglycans/molecule, while that of the S2 class is close to one. Differences in glycosaminoglycan length were observed between tissues and between the S1 and S2 class of proteoglycan derived from a single tissue.  相似文献   

17.
A modification of the published method [Baker, Rodén & Stoolmiller (1972) J. Biol. Chem. 247, 3838--3847] for preparation of Smith-degraded proteoglycan is described. The new method is based on the finding that most of the chondroitin sulphate is cleaved from proteoglycan core protein by periodate oxidation. The borohydride reduction procedure was modified because the periodate-oxidized core protein is extensively degraded under the highly alkaline conditions previously used. The new method involves the separation of periodate-oxidized core protein from chondroitin sulphate by gel filtration on Sepharose 6B, and the reduction of the former in H3BO3/NaBH4 at pH 8.5 to produce the reduced species. Smith-degraded proteoglycan prepared by this method exhibited high acceptor activity for xylosyltransferase from embryonic-chick cartilage and had an apparent Km of 160 microgram/ml or 45 micrometer on a serine basis. In this assay system an apparent Km of 19 micrometer was obtained for UDP-xylose. The intermediate products periodate-oxidized core protein and reduced proteoglycen were inactive as xylosyltransferase acceptor substrates.  相似文献   

18.
The expression and core protein structure of two proteoglycans, the major cartilage proteoglycan isolated from a rat chondrosarcoma and a small molecular weight chondroitin sulfate proteoglycan isolated from a rat yolk sac tumor, have been compared. The cartilage proteoglycan was not detectable in the cartilage tissue of cartilage matrix deficient (cmdcmd) neonatal mice by immunofluorescence, but the cmd cartilage did react with antibodies against the core protein of the yolk sac tumor proteoglycan. Radioimmunoassays showed that the core proteins of these proteoglycans are not cross-reactive with each other. Analysis of the core proteins by sodium dodecyl sulfate/polyacrylamide gel electrophoresis after chondroitinase ABC treatment of the proteoglycan revealed a large difference in their sizes. The cartilage proteoglycan core protein had a molecular weight of about 200,000 while the yolk sac tumor proteoglycan core protein migrated with an apparent molecular weight of about 20,000. In addition, the cultured yolk sac tumor cells that make the small proteoglycan did not react with antiserum against the cartilage proteoglycan. These results indicate that the proteoglycan isolated from the yolk sac tumor is similar to the small chondroitin sulfate proteoglycan species found in cartilage and support the existence of at least two dissimilar and genetically independent chondroitin sulfate proteoglycan core proteins.  相似文献   

19.
Digestion of chick-embryo cartilage proteoglycan (type H) with chondroitin AC II lyase or keratanase, in the presence of EDTA, N-ethylmaleimide, phenylmethanesulphonyl fluoride and pepstatin, resulted in the removal of the bulk of the chondroitin sulphate or keratan sulphate chains respectively, without altering the protein portion of the macromolecule. An exhaustive treatment of the proteoglycan with chondroitin AC II lyase followed by digestion with keratanase yielded a core fraction having the enzymically modified linkage oligosaccharides. Zonal sedimentation of this core preparation on a sucrose gradient in 0.5% SDS resulted in a single narrow band with a sedimentation coefficient of 6S. In 4 M-guanidinium chloride, the core preparation showed a tendency to aggregate to multiple-molecular-weight forms which could dissociate in the presence of Triton X-100. The results indicate that the preponderance of glycosaminoglycans in the proteoglycan molecule is a main reason for both polydispersity and hydrophilicity of the proteoglycan preparation, and further suggest that the enzymic procedures could prove useful as a method to obtain new information about the structure and properties of proteoglycan core molecules.  相似文献   

20.
Two different chondroitin sulfate proteoglycans (CSPG) in embryonic chick brain were distinguished by immunoreactivity either with S103L, a rat monoclonal antibody which reacts specifically with an 11-amino-acid region in the chondroitin sulfate domain of the core protein of chick cartilage CSPG (Krueger, R. C., Jr., Fields, T. A., Mensch, J. R., and Schwartz, N. B. (1990) J. Biol. Chem. 265, 12088-12097), or with HNK-1, a mouse monoclonal antibody which reacts with a 3-sulfoglucuronic acid residue on neural glycolipids and glycoproteins (Chou, D. K. H., Ilyas, A., Evans, J. E. Costello, C., Quarles, R. H., and Jungawala, F. B. (1986) J. Biol. Chem. 261, 11717-11725) but not with both antibodies. This specific immunoreactivity was used to separate the two CSPGs for further characterization. The S103L reactive brain proteoglycan had a core protein of similar size to cartilage CSPG (370 kDa) but exhibited a smaller hydrodynamic size (K(av) of 0.308). It was substituted predominantly with chondroitin sulfate chains and virtually no keratan sulfate chains. The HNK-1 reactive CSPG had a smaller core protein (340 kDa), an even smaller hydrodynamic size (K(av) of 0.564), and was substituted with both chondroitin sulfate and keratan sulfate chains. Glycosidase digestion patterns with endo-beta-galactosidase, N-glycosidase F, neuraminidase, and O-glycosidase, and reactivity with an antibody to the hyaluronate binding region also showed significant differences between the two brain CSPGs. Expression of the S103L reactive brain CSPG was developmentally regulated from embryonic day 7 through 19 with a peak in core protein on day 13, and in mRNA expression at day 10. In contrast the HNK-1 reactive brain CSPG was constitutively present from day 7 through hatching. These data suggest that these two distinct core proteins are immunologically and biochemically unique translation products of two different CSPG genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号