首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oh CT  Kwon SH  Jeon KJ  Han PL  Kim SH  Jeon SH 《FEBS letters》2002,531(3):427-431
An important step in Drosophila neurogenesis is to establish the neural dorsoventral (DV) patterning. Here we describe how dpp loss-of- and gain-of-function mutation affects the homeobox-containing neural DV patterning genes expressed in the ventral neuroectoderm. Ventral nervous system defective (vnd), intermediate neuroblast defective (ind), muscle-specific homeobox (msh), and orthodenticle (otd) genes participate in development of the central nervous system and peripheral nervous system, and encode homeodomain proteins. otd and msh genes were ectopically expressed in dpp loss-of-function mutation, but vnd and ind were not affected. However, when dpp was ectopically expressed in the ventral neuroectoderm by rho-GAL4/UAS-dpp system, it caused the repression of vnd, and msh expressions in ventral and dorsal columns of the neuroectoderm, respectively, but not that of ind. The later expression pattern of otd was also restricted by Dpp. The expression pattern of msh, vnd and otd in dpp loss-of-function and gain-of-function mutation indicates that Dpp activity does not reach to the ventral midline and it works locally to establish the dorsal boundary of the ventral neuroectoderm.  相似文献   

2.
Drosophila adult structures derive from imaginal discs, which are sacs with apposed epithelial sheets, the disc proper (DP) and the peripodial epithelium (PE). The Drosophila TGF-beta family member decapentaplegic (dpp) contributes to the development of adult structures through expression in all imaginal discs, driven by enhancers from the 3' cis-regulatory region of the gene. In the eye/antennal disc, there is 3' directed dpp expression in both the DP and PE associated with cell proliferation and eye formation. Here, we analyze a new class of dpp cis-regulatory mutations, which specifically disrupt a previously unknown region of dpp expression, controlled by enhancers in the 5' regulatory region of the gene and limited to the PE of eye/antennal discs. These are the first described Drosophila mutations that act by solely disrupting PE gene expression. The mutants display defects in the ventral adult head and alter peripodial but not DP expression of known dpp targets. However, apoptosis is observed in the underlying DP, suggesting that this peripodial dpp signaling source supports cell survival in the DP.  相似文献   

3.
Antennapedia is one of the homeotic selector genes required for specification of segment identity in Drosophila. Dominant mutations that ectopically express Antennapedia cause transformation of antenna to leg. Loss-of-function mutations cause partial transformation of leg to antenna. Here we examine the role of Antennapedia in the establishment of leg identity in light of recent advances in our understanding of antennal development. In Antennapedia mutant clones in the leg disc, Homothorax and Distal-less are coexpressed and act via spineless to transform proximal femur to antenna. Antennapedia is negatively regulated during leg development by Distal-less, spineless, and dachshund and this reduced Antennapedia expression is needed for the proper development of distal leg elements. These findings suggest that the temporal and spatial regulation of the homeotic selector gene Antennapedia in the leg disc is necessary for normal leg development in Drosophila.  相似文献   

4.
5.
The enormous diversity of extant animal forms is a testament to the power of evolution, and much of this diversity has been achieved through the emergence of novel morphological traits. The origin of novel morphological traits is an extremely important issue in biology, and a frequent source of this novelty is co-option of pre-existing genetic systems for new purposes (Carroll et al., 2008). Appendages, such as limbs, fins and antennae, are structures common to many animal body plans which must have arisen at least once, and probably multiple times, in lineages which lacked appendages. We provide evidence that appendage proximodistal patterning genes are expressed in similar registers in the anterior embryonic neurectoderm of Drosophila melanogaster and Saccoglossus kowalevskii (a hemichordate). These results, in concert with existing expression data from a variety of other animals suggest that a pre-existing genetic system for anteroposterior head patterning was co-opted for patterning of the proximodistal axis of appendages of bilaterian animals.  相似文献   

6.
7.
The phylogeny of Celastraceae tribe Euonymeae (∼230 species in eight genera in both the Old and New Worlds) was inferred using morphological characters together with plastid (matK, trnL-F) and nuclear (ITS and 26S rDNA) genes. Tribe Euonymeae has been defined as those genera of Celastraceae with generally opposite leaves, isomerous carpels, loculicidally dehiscent capsules, and arillate seeds (except Microtropis). Euonymus is the most diverse (129 species) and widely cultivated genus in the tribe. We infer that tribe Euonymeae consists of at least six separate lineages within Celastraceae and that a revised natural classification of the family is needed. Microtropis and Quetzalia are inferred to be distinct sister groups that together are sister to Zinowiewia. The endangered Monimopetalum chinense is an isolated and early derived lineage of Celastraceae that represents an important component of phylogenetic diversity within the family. Hedraianthera is sister to Brassiantha, and we describe a second species (Brassiantha hedraiantheroides A.J. Ford) that represents the first reported occurrence of this genus in Australia. Euonymus globularis, from eastern Australia, is sister to Menepetalum, which is endemic to New Caledonia, and we erect a new genus (Dinghoua R.H. Archer) for it. The Madagascan species of Euonymus are sister to Pleurostylia and recognized as a distinct genus (Astrocassine ined.). Glyptopetalum, Torralbasia, and Xylonymus are all closely related to Euonymus sensu stricto and are questionably distinct from it. Current intrageneric classifications of Euonymus are not completely natural and require revision.  相似文献   

8.
During planar polarity patterning of the Drosophila wing, a "core" group of planar polarity genes has been identified which acts downstream of global polarity cues to locally coordinate cell polarity and specify trichome production at distal cell edges. These genes encode protein products that assemble into asymmetric apicolateral complexes that straddle the proximodistal junctional region between adjacent cells. We have carried out detailed genetic analysis experiments, analysing the requirements of each complex component for planar polarity patterning. We find that the three transmembrane proteins at the core of the complex, Frizzled, Strabismus and Flamingo, are required earliest in development and are the only components needed for intercellular polarity signalling. Notably, cells that lack both Frizzled and Strabismus are unable to signal, revealing an absolute requirement for both proteins in cell-cell communication. In contrast the cytoplasmic components Dishevelled, Prickle and Diego are not needed for intercellular communication. These factors contribute to the cell-cell propagation of polarity, most likely by promotion of intracellular asymmetry. Interestingly, both local polarity propagation and trichome placement occur normally in mutant backgrounds where asymmetry of polarity protein distribution is undetectable, suggesting such asymmetry is not an absolute requirement for any of the functions of the core complex.  相似文献   

9.
The teashirt (tsh) gene has dorso-ventral (DV) asymmetric functions in Drosophila eye development: promoting eye development in dorsal and suppressing eye development in ventral by Wingless mediated Homothorax (HTH) induction [Development 129 (2002) 4271]. We looked for DV spatial cues required by tsh for its asymmetric functions. The dorsal Iroquois-Complex (Iro-C) genes and Delta (Dl) are required and sufficient for the tsh dorsal functions. The ventral Serrate (Ser), but not fringe (fng) or Lobe (L), is required and sufficient for the tsh ventral function. We propose that DV asymmetric function of tsh represents a novel tier of DV pattern regulation, which takes place after the spatial expression patterns of early DV patterning genes are established in the eye.  相似文献   

10.
The distal region of the Drosophila leg, the tarsus, is divided into five segments (ta I-V) and terminates in the pretarsus, which is characterized by a pair of claws. Several homeobox genes are expressed in distinct regions of the tarsus, including aristaless (al) and lim1 in the pretarsus, Bar (B) in ta IV and V, and apterous (ap) in ta IV. This pattern is governed by regulatory interactions between these genes; for example, Al and B are mutually antagonistic resulting in exclusion of B expression from the pretarsus. Although Al is necessary, it is not sufficient to repress B, indicating another factor is required. Here, this factor is identified as the product of the C15 gene, which is another homeodomain protein, a homolog of the human Hox11 oncogene. C15 is expressed in the same cells as al and, together, C15 and Al appear to directly repress B. C15/Al also act indirectly to repress ap in ta V, i.e., in surrounding cells. To do this, C15/Al autonomously repress expression of the gene encoding the Notch ligand Delta (Dl) in the pretarsus, restricting Dl to ta V and creating a Dl+/Dl- border at the interface between ta V and the pretarsus. This results in upregulation of Notch signaling, which induces expression of the bowl gene, the product of which represses ap.  相似文献   

11.
The genes Distal-less, dachshund, extradenticle, and homothorax have been shown in Drosophila to be among the earliest genes that define positional values along the proximal-distal (PD) axis of the developing legs. In order to study PD axis formation in the appendages of the pill millipede Glomeris marginata, we have isolated homologues of these four genes and have studied their expression patterns. In the trunk legs, there are several differences to Drosophila, but the patterns are nevertheless compatible with a conserved role in defining positional values along the PD axis. However, their role in the head appendages is apparently more complex. Distal-less in the mandible and maxilla is expressed in the forming sensory organs and, thus, does not seem to be involved in PD axis patterning. We could not identify in the mouthparts components that are homologous to the distal parts of the trunk legs and antennnae. Interestingly, there is also a transient premorphogenetic expression of Distal-less in the second antennal and second maxillary segment, although no appendages are eventually formed in these segments. The dachshund gene is apparently involved both in PD patterning as well as in sensory organ development in the antenna, maxilla, and mandible. Strong dachshund expression is specifically correlated with the tooth-like part of the mandible, a feature that is shared with other mandibulate arthropods. homothorax is expressed in the proximal and medial parts of the legs, while extradenticle RNA is only seen in the proximal region. This overlap of expression corresponds to the functional overlap between extradenticle and homothorax in Drosophila.  相似文献   

12.
The linear cardiac tube of Drosophila, the dorsal vessel, is an important model organ for the study of cardiac specification and patterning in vertebrates. In Drosophila, the Hox segmentation gene abdominal-A (abd-A) is required for the specification of a functionally distinct heart region at the posterior of the dorsal vessel, from which blood is pumped anteriorly through a tube termed the aorta. Since we have previously shown that the posterior part of the aorta is specified during embryogenesis to form the adult heart during metamorphosis, we determined if the embryonic aorta is also patterned by the function of Hox segmentation genes. Using gain- and loss-of-function experiments, we demonstrate that the three Hox genes expressed in the posterior aorta and heart are sufficient to confer heart or posterior aorta fate throughout the dorsal vessel. Additionally, we demonstrate that Ultrabithorax and abd-A, but not Antennapedia, function to control cell number in the dorsal vessel. These studies add robustness to the model that homeotic selector genes pattern the Drosophila dorsal vessel, and further extend our understanding of how the cardiac tube is patterned in animal models.  相似文献   

13.
Cellular interaction between the proximal and distal domains of the limb plays key roles in proximal-distal patterning. In Drosophila, these domains are established in the embryonic leg imaginal disc as a proximal domain expressing escargot, surrounding the Distal-less expressing distal domain in a circular pattern. The leg imaginal disc is derived from the limb primordium that also gives rise to the wing imaginal disc. We describe here essential roles of Wingless in patterning the leg imaginal disc. Firstly, Wingless signaling is essential for the recruitment of dorsal-proximal, distal, and ventral-proximal leg cells. Wingless requirement in the proximal leg domain appears to be unique to the embryo, since it was previously shown that Wingless signal transduction is not active in the proximal leg domain in larvae. Secondly, downregulation of Wingless signaling in wing disc is essential for its development, suggesting that Wg activity must be downregulated to separate wing and leg discs. In addition, we provide evidence that Dll restricts expression of a proximal leg-specific gene expression. We propose that those embryo-specific functions of Wingless signaling reflect its multiple roles in restricting competence of ectodermal cells to adopt the fate of thoracic appendages.  相似文献   

14.
The teashirt gene encodes a protein with three widely spaced zinc finger motifs that is crucial for specifying trunk identity in Drosophila embryos. Here, we describe a gene called tiptop, which encodes a protein highly similar to Teashirt. We have analyzed the expression patterns and functions of these two genes in the trunk of the embryo. Initially, teashirt and tiptop expressions are detected in distinct domains; teashirt in the trunk and tiptop in parts of the head and tail. In different mutant situations, we show that, in the trunk and head, they repress each other's expression. Unlike teashirt, we found that deletion of tiptop is homozygous viable and fertile. However, embryos lacking both gene activities display a more severe trunk phenotype than teashirt mutant embryos alone. Ectopic expression of either gene produces an almost identical phenotype, indicating that Teashirt and Tiptop have, on the whole, common activities. We conclude that Teashirt and Tiptop repress each other's expression and that Teashirt has a crucial role for trunk patterning that is in part masked by ectopic expression of Tiptop.  相似文献   

15.
16.
The membrane protein Patched (Ptc) is a critical regulator of Hedgehog signaling. Ptc is among a family of proteins that contain a sterol sensor motif. The function of this domain is poorly understood, but some proteins that contain sterol sensors are involved in cholesterol homeostasis. In the SREBP cleavage-activating protein (SCAP), sterols inhibit the protein's activity through this domain. Mutations in two highly conserved residues in the SCAP sterol sensor have been identified that confer resistance to sterol regulation. We introduced the analogous mutations in the sterol sensor motif of fly Ptc and mouse Ptc1 and examined their effect on protein activity. In contrast to SCAP, the sterol sensor mutations had different affects on Drosophila Ptc; Ptc Y442C retained function, while Ptc D584N conferred dominant negative activity. In the wing imaginal disc, Ptc D584N overexpression induced Hedgehog targets by stabilizing Cubitus interruptus and inducing decapentaplegic. However, Ptc D584N did not induce collier, a gene that requires high levels of Hedgehog signaling. In mouse Ptc1, the Y438C and D585N mutations did not stimulate signaling in Shh-responsive cell lines but did complement murine ptc1(-/-) cells. The results suggest that mutations in sterol sensor motifs alter function differently between sterol sensor family members.  相似文献   

17.
Notch signaling controls formation of joints at leg segment borders and growth of the developing Drosophila leg. Here, we identify the odd-skipped gene family as a key group of genes that function downstream of the Notch receptor to promote morphological changes associated with joint formation during leg development. odd, sob, drm, and bowl are expressed in a segmental pattern in the developing leg, and their expression is regulated by Notch signaling. Ectopic expression of odd, sob, or drm can induce invaginations in the leg disc epithelium and morphological changes in the adult leg that are characteristic of endogenous invaginating joint cells. These effects are not due to an alteration in the expression of other genes of the developing joint. While odd or drm mutant clones do not affect leg segmentation, and thus appear to act redundantly, bowl mutant clones do perturb leg development. Specifically, bowl mutant clones result in a failure of joint formation from the distal tibia to tarsal segment 5, while more proximal clones cause melanotic protrusions from the leg cuticle. Together, these results indicate that the odd-skipped family of genes mediates Notch function during leg development by promoting a specific aspect of joint formation, an epithelial invagination. As the odd-skipped family genes are involved in regulating cellular morphogenesis during both embryonic segmentation and hindgut development, we suggest that they may be required in multiple developmental contexts to induce epithelial cellular changes.  相似文献   

18.
Tbx20-related T-box genes have been implicated in the regulation of heart development in several vertebrate species. In the present report, we demonstrate that a pair of genes representing Drosophila orthologs of Tbx20, midline (mid) and H15, have important functions during the development of the Drosophila equivalent of the heart, i.e. the dorsal vessel. We show that mid is among the earliest known genes that are specifically expressed in all cardioblasts during early embryogenesis, and H15 expression is subsequently activated in the same cells. Mutant embryos lacking the activity of mid, or both mid and H15, are able to form dorsal vessels with largely normal numbers of cardioblasts and pericardial cells. Furthermore, the mutant cardioblasts express several general cardioblast markers such as Mef2 and Toll at normal levels. However, the expression of tinman (tin), which normally occurs in four out of six cardioblasts in each hemisegment of the dorsal vessel, is almost abolished. Conversely, the expression of the Dorsocross (Doc) T-box genes, which is normally restricted to the two Tin-negative cardioblasts in each hemisegment, is strongly expanded into the majority of cardioblasts in mid mutant and mid+H15-deficient embryos. Altogether, the data from the loss-of-function phenotypes demonstrate that mid, and to a lesser degree H15, have important roles in establishing the metameric patterning of cardioblast identities, but not in specifying cardioblasts as such. Ectopic expression of mid causes ectopic tin expression and, less efficiently, produces extra cardioblasts. We propose that one of the major functions of mid and H15 during cardioblast development is the re-activation of tin expression at a stage when the induction of tin by Dpp in the dorsal mesoderm has ceased. Through this activity, mid and H15 are required for the normal functional diversification of cardioblasts and the expression of tin-dependent terminal differentiation genes within the dorsal vessel.  相似文献   

19.
20.
We cloned 10 Japanese pear (Pyrus pyrifolia) MIKC-type II MADS-box genes, and analyzed their expression during fruit development and ripening. PpMADS2-1 was APETALA (AP)1-like; PpMADS3-1 was FRUITFULL (FUL)/SQUAMOSA (SQUA)-like; PpMADS4-1 was AGAMOUS-like (AGL)6; PpMADS5-1 and PpMADS8-1 were SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC)-like; PpMADS9-1, PpMADS12-1, PpMADS14-1 and PpMADS16-1 were SEPALLATA (SEP)-like; while PpMADS15-1 was AGL/SHATTERPROOF (SHP)-like. Phylogenetic analysis showed their grouping into five major clades (and 10 sub-clades) that was consistent with their diverse functional types. Expression analysis in flower tissue revealed their distinct putative homeotic functional classes: A-class (PpMADS2-1, PpMADS3-1, PpMADS4-1, and PpMADS14-1), C-class (PpMADS15-1), E-class (PpMADS9-1, PpMADS12-1, and PpMADS16-1) and E (F)-class (PpMADS5-1 and PpMADS8-1). Differential gene expression was observed in different fruit tissues (skin, cortex and core) as well as in the cortex during the course of fruit development and ripening. Collectively, our results suggest their involvement in the diverse aspects of plant development including flower development and the course of fruit development and ripening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号