首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The multiprotein von Hippel-Lindau (VHL) tumor suppressor and Skp1-Cul1-F-box protein (SCF) complexes belong to families of structurally related E3 ubiquitin ligases. In the VHL ubiquitin ligase, the VHL protein serves as the substrate recognition subunit, which is linked by the adaptor protein Elongin C to a heterodimeric Cul2/Rbx1 module that activates ubiquitylation of target proteins by the E2 ubiquitin-conjugating enzyme Ubc5. In SCF ubiquitin ligases, F-box proteins serve as substrate recognition subunits, which are linked by the Elongin C-like adaptor protein Skp1 to a Cul1/Rbx1 module that activates ubiquitylation of target proteins, in most cases by the E2 Cdc34. In this report, we investigate the functions of the Elongin C and Skp1 proteins in reconstitution of VHL and SCF ubiquitin ligases. We identify Elongin C and Skp1 structural elements responsible for selective interaction with their cognate Cullin/Rbx1 modules. In addition, using altered specificity Elongin C and F-box protein mutants, we investigate models for the mechanism underlying E2 selection by VHL and SCF ubiquitin ligases. Our findings provide evidence that E2 selection by VHL and SCF ubiquitin ligases is determined not solely by the Cullin/Rbx1 module, the target protein, or the integrity of the substrate recognition subunit but by yet to be elucidated features of these macromolecular complexes.  相似文献   

2.
SCF complexes are multi-subunit ubiquitin ligases that, in concert with the E1 and E2 ubiquitination enzymes, catalyze the ubiquination of specific target proteins. Only three yeast SCFs have been reconstituted and characterized to date; each of these ubiquitinates its target protein with the E2 Cdc34. We have reconstituted and purified 1 known and 12 novel yeast SCF complexes, and explored the ability of these complexes to function with 5 different purified E2 enzymes; Ubc1, Cdc34, Ubc4, Ubc8 and Ubc11. We have found that the ubiquitination of Sic1 by the reconstituted SCF(Cdc4) complex was specifically catalyzed by two of the five E2 enzymes tested in vitro; Cdc34 and Ubc4. We also show that at least eight of the purified SCF complexes clearly ubiquitinated their F-box proteins in vitro, lending support for a regulatory mechanism in which F-box proteins catalyze their own destruction. The autoubiquitination of each F-box was in some cases catalyzed only by Cdc34, and in other cases preferentially catalyzed by Ubc4. Ubc4 thus interacts with multiple SCFs in vitro, and the interactions among SCF and E2 components of the ubiquitination machinery may allow further diversification of the roles of SCFs in vivo.  相似文献   

3.
SCF ubiquitin protein ligases and phosphorylation-dependent proteolysis   总被引:13,自引:0,他引:13  
Many key activators and inhibitors of cell division are targeted for degradation by a recently described family of E3 ubiquitin protein ligases termed Skp1-Cdc53-F-box protein (SCF) complexes. SCF complexes physically link substrate proteins to the E2 ubiquitin-conjugating enzyme Cdc34, which catalyses substrate ubiquitination, leading to subsequent degradation by the 26S proteasome. SCF complexes contain a variable subunit called an F-box protein that confers substrate specificity on an invariant core complex composed of the subunits Cdc34, Skp1 and Cdc53. Here, we review the substrates and pathways regulated by the yeast F-box proteins Cdc4, Grr1 and Met30. The concepts of SCF ubiquitin ligase function are illustrated by analysis of the degradation pathway for the G1 cyclin Cln2. Through mass spectrometric analysis of Cdc53 associated proteins, we have identified three novel F-box proteins that appear to participate in SCF-like complexes. As many F-box proteins can be found in sequence databases, it appears that a host of cellular pathways will be regulated by SCF-dependent proteolysis.  相似文献   

4.
The ubiquitin system of intracellular protein degradation controls the abundance of many critical regulatory proteins. Specificity in the ubiquitin system is determined largely at the level of substrate recognition, a step that is mediated by E3 ubiquitin ligases. Analysis of the mechanisms of phosphorylation directed proteolysis in cell cycle regulation has uncovered a new class of E3 ubiquitin ligases called SCF complexes, which are composed of the subunits Skp1, Rbx1, Cdc53 and any one of a large number of different F-box proteins. The substrate specificity of SCF complexes is determined by the interchangeable F-box protein subunit, which recruits a specific set of substrates for ubiquitination to the core complex composed of Skp1, Rbx1, Cdc53 and the E2 enzyme Cdc34. F-box proteins have a bipartite structure--the shared F-box motif links F-box proteins to Skp1 and the core complex, whereas divergent protein-protein interaction motifs selectively bind their cognate substrates. To date all known SCF substrates are recognised in a strictly phosphorylation dependent manner, thus linking intracellular signalling networks to the ubiquitin system. The plethora of different F-box proteins in databases suggests that many pathways will be governed by SCF-dependent proteolysis. Indeed, genetic analysis has uncovered roles for F-box proteins in a variety of signalling pathways, ranging from nutrient sensing in yeast to conserved developmental pathways in plants and animals. Moreover, structural analysis has revealed ancestral relationships between SCF complexes and two other E3 ubiquitin ligases, suggesting that the combinatorial use of substrate specific adaptor proteins has evolved to allow the regulation of many cellular processes. Here, we review the known signalling pathways that are regulated by SCF complexes and highlight current issues in phosphorylation dependent protein degradation.  相似文献   

5.
Skp1p-cullin-F-box protein (SCF) complexes are ubiquitin-ligases composed of a core complex including Skp1p, Cdc53p, Hrt1p, the E2 enzyme Cdc34p, and one of multiple F-box proteins which are thought to provide substrate specificity to the complex. Here we show that the F-box protein Rcy1p is required for recycling of the v-SNARE Snc1p in Saccharomyces cerevisiae. Rcy1p localized to areas of polarized growth, and this polarized localization required its CAAX box and an intact actin cytoskeleton. Rcy1p interacted with Skp1p in vivo in an F-box-dependent manner, and both deletion of its F box and loss of Skp1p function impaired recycling. In contrast, cells deficient in Cdc53p, Hrt1p, or Cdc34p did not exhibit recycling defects. Unlike the case for F-box proteins that are known to participate in SCF complexes, degradation of Rcy1p required neither its F box nor functional 26S proteasomes or other SCF core subunits. Importantly, Skp1p was the only major partner that copurified with Rcy1p. Our results thus suggest that a complex composed of Rcy1p and Skp1p but not other SCF components may play a direct role in recycling of internalized proteins.  相似文献   

6.
The ubiquitin-targeting pathway is evolutionarily conserved and critical for many cellular functions. Recently, we discovered a role for two ubiquitin-protein ligases (E3s), Rsp5p and the Apc5p subunit of the anaphase-promoting complex (APC), in mitotic chromatin assembly in Saccharomyces cerevisiae. In the present study, we investigated whether Rsp5p and Apc5p interact in an intracellular pathway regulating chromatin remodeling. Our genetic studies strongly suggest that Rsp5p and Apc5p do interact and that Rsp5p acts upstream of Apc5p. Since E3 enzymes typically require the action of a ubiquitin-conjugating enzyme (E2), we screened E2 mutants for chromatin assembly defects, which resulted in the identification of Cdc34p and Ubc7p. Cdc34p is the E2 component of the SCF (Skp1p/Cdc53p/F-box protein). Therefore, we analyzed additional SCF mutants for chromatin assembly defects. Defective chromatin assembly extracts generated from strains harboring a mutation in the Cdc53p SCF subunit or a nondegradable SCF target, Sic1(Deltaphos), confirmed that the SCF was involved in mitotic chromatin assembly. Furthermore, we demonstrated that Ubc7p physically and genetically interacts with Rsp5p, suggesting that Ubc7p acts as an E2 for Rsp5p. However, rsp5CA and Deltaubc7 mutations had opposite genetic effects on apc5CA and cdc34-2 phenotypes. Therefore, the antagonistic interplay between Deltaubc7 and rsp5CA, with respect to cdc34-2 and apc5CA, indicates that the outcome of Rsp5p's interaction with Cdc34p and Apc5p may depend on the E2 interacting with Rsp5p.  相似文献   

7.
Identification of a family of human F-box proteins.   总被引:21,自引:0,他引:21  
F-box proteins are an expanding family of eukaryotic proteins characterized by an approximately 40 aminoacid motif, the F box (so named because cyclin F was one of the first proteins in which this motif was identified) [1]. Some F-box proteins have been shown to be critical for the controlled degradation of cellular regulatory proteins [2] [3]. In fact, F-box proteins are one of the four subunits of ubiquitin protein ligases called SCFs. The other three subunits are the Skp1 protein; one of the cullin proteins (Cul1 in metazoans and Cdc53 or Cul A in the yeast Saccharomyces cerevisiae); and the recently identified Roc1 protein (also called Rbx1 or Hrt1). SCF ligases bring ubiquitin conjugating enzymes (either Ubc3 or Ubc4) to substrates that are specifically recruited by the different F-box proteins. The need for high substrate specificity and the large number of known F-box proteins in yeast and worms [2] [4] suggest the existence of a large family of mammalian F-box proteins. Using Skp1 as a bait in a yeast two-hybrid screen and by searching DNA databases, we identified a family of 26 human F-box proteins, 25 of which were novel. Some of these proteins contained WD-40 domains or leucine-rich repeats; others contained either different protein-protein interaction modules or no recognizable motifs. We have named the F-box proteins that contain WD-40 domains Fbws, those containing leucine-rich repeats, Fbls, and the remaining ones Fbxs. We have further characterized representative members of these three classes of F-box proteins.  相似文献   

8.
SCF complexes are E3 ubiquitin-protein ligases that mediate degradation of regulatory and signaling proteins and control G1/S cell cycle progression by degradation of G1 cyclins and the cyclin-dependent kinase inhibitor, Sic1. Interchangeable F-box proteins bind the core SCF components; each recruits a specific subset of substrates for ubiquitylation. The F-box proteins themselves are rapidly turned over by autoubiquitylation, allowing rapid recycling of SCF complexes. Here we report a role for the UbL-UbA protein Ddi1 in the turnover of the F-box protein, Ufo1. Ufo1 is unique among F-box proteins in having a domain comprising multiple ubiquitin-interacting motifs (UIMs) that mediate its turnover. Deleting the UIMs leads to stabilization of Ufo1 and to cell cycle arrest at G1/S of cells with long buds resembling skp1 mutants. Cells accumulate substrates of other F-box proteins, indicating that the SCF pathway of substrate ubiquitylation is inhibited. Ufo1 interacts with Ddi1 via its UIMs, and Deltaddi1 cells arrest when full-length UFO1 is overexpressed. These results imply a role for the UIMs in turnover of SCF(Ufo1) complexes that is dependent on Ddi1, a novel activity for an UbL-UbA protein.  相似文献   

9.
Abundance of substrate receptor subunits of Cullin-RING ubiquitin ligases (CRLs) is tightly controlled to maintain the full repertoire of CRLs. Unbalanced levels can lead to sequestration of CRL core components by a few overabundant substrate receptors. Numerous diseases, including cancer, have been associated with misregulation of substrate receptor components, particularly for the largest class of CRLs, the SCF ligases. One relevant mechanism that controls abundance of their substrate receptors, the F-box proteins, is autocatalytic ubiquitylation by intact SCF complex followed by proteasome-mediated degradation. Here we describe an additional pathway for regulation of F-box proteins on the example of yeast Met30. This ubiquitylation and degradation pathway acts on Met30 that is dissociated from Skp1. Unexpectedly, this pathway required the cullin component Cdc53/Cul1 but was independent of the other central SCF component Skp1. We demonstrated that this non-canonical degradation pathway is critical for chromosome stability and effective defense against heavy metal stress. More importantly, our results assign important biological functions to a sub-complex of cullin-RING ligases that comprises Cdc53/Rbx1/Cdc34, but is independent of Skp1.  相似文献   

10.
Ubiquitin-mediated degradation plays a crucial role in many fundamental biological pathways, including the mediation of cellular responses to changes in environmental conditions. A family of ubiquitin ligase complexes, called SCF complexes, found throughout eukaryotes, is involved in a variety of biological pathways. In Saccharomyces cerevisiae, an SCF complex contains a common set of components, namely, Cdc53p, Skp1p, and Hrt1p. Substrate specificity is defined by a variable component called an F-box protein. The F- box is a approximately 40-amino-acid motif that allows the F-box protein to bind Skp1p. Each SCF complex recognizes different substrates according to which F-box protein is associated with the complex. In yeasts, three SCF complexes have been demonstrated to associate with the ubiquitin-conjugating enzyme Cdc34p and have ubiquitin ligase activity. F-box proteins are not abundant and are unstable. As part of the SCF(Met30p) complex, the F-box protein Met30p represses methionine biosynthetic gene expression when availability of L-methionine is high. Here we demonstrate that in vivo SCF(Met30p) complex activity can be regulated by the abundance of Met30p. Furthermore, we provide evidence that Met30p abundance is regulated by the availability of L-methionine. We propose that the cellular responses mediated by an SCF complex are directly regulated by environmental conditions through the control of F-box protein stability.  相似文献   

11.
Large-scale analysis of the human ubiquitin-related proteome   总被引:1,自引:0,他引:1  
Protein ubiquitylation contributes to the regulation of many cellular processes including protein degradation, receptor internalization, and repair of DNA damage. We now present a comprehensive characterization of ubiquitin-conjugated and ubiquitin-associated proteins in human cells. The proteins were purified by immunoaffinity chromatography under denaturing or native conditions. They were then digested with trypsin, and the resulting peptides were analyzed by 2-D LC and MS/MS. A total of 670 distinct proteins were identified; 345 proteins (51%) were classified as Urp-D (ubiquitin-related proteome under the denaturing condition) and comprised ubiquitin-conjugated molecules, whereas 325 proteins (49%) were classified as Urp-N (ubiquitin-related proteome only under the native condition) and included molecules that associated with ubiquitylated proteins. The proportions of proteins in various functional categories differed substantially between Urp-D and Urp-N. Many ribosomal subunits were detected in the Urp-D group of proteins and several of these subunits were directly shown to be ubiquitylated by mass spectrometric analysis, suggesting that ubiquitylation might play an important role in the regulation and/or quality control of ribosomal proteins. Our results demonstrate the potential of proteomics analysis of protein ubiquitylation to provide important insight into the regulation of protein stability and other ubiquitin-related cellular functions.  相似文献   

12.
Posttranslational modification of a protein by ubiquitin usually results in rapid degradation of the ubiquitinated protein by the proteasome. The transfer of ubiquitin to substrate is a multistep process. Cdc4p is a component of a ubiquitin ligase that tethers the ubiquitin-conjugating enzyme Cdc34p to its substrates. Among the domains of Cdc4p that are crucial for function are the F-box, which links Cdc4p to Cdc53p through Skp1p, and the WD-40 repeats, which are required for binding the substrate for Cdc34p. In addition to Cdc4p, other F-box proteins, including Grr1p and Met30p, may similarly act together with Cdc53p and Skp1p to function as ubiquitin ligase complexes. Because the relative abundance of these complexes, known collectively as SCFs, is important for cell viability, we have sought evidence of mechanisms that modulate F-box protein regulation. Here we demonstrate that the abundance of Cdc4p is subject to control by a peptide segment that we term the R-motif (for "reduced abundance"). Furthermore, we show that binding of Skp1p to the F-box of Cdc4p inhibits R-motif-dependent degradation of Cdc4p. These results suggest a general model for control of SCF activities.  相似文献   

13.
14.
Many proteins are targeted to proteasome degradation by a family of E3 ubiquitin ligases, termed SCF complexes, that link substrate proteins to an E2 ubiquitin-conjugating enzyme. SCFs are composed of three core proteins-Skp1, Cdc53/Cull, Rbx1/Hrt1-and a substrate specific F-box protein. We have identified in Drosophila melanogaster the closest homologues to the human components of the SCF(betaTrCP) complex and the E2 ubiquitin-conjugating enzyme UbcH5. We show that putative Drosophila SCF core subunits dSkpA and dRbx1 both interact directly with dCu11 and the F-box protein Slmb. We also describe the direct interaction of the UbcH5 related protein UbcD1 with dCul1 and Slmb. In addition, a functional complementation test performed on a Saccharomyces cerevisiae Hrt1p-deficient mutant showed that Drosophila Rbx1 is able to restore the yeast cells viability. Our results suggest that dRbx1, dSkpA, dCullin1, and Slimb proteins are components of a Drosophila SCF complex that functions in combination with the ubiquitin conjugating enzyme UbcD1.  相似文献   

15.
Ubiquitin ligases, together with their cognate ubiquitin-conjugating enzymes, are responsible for the ubiquitylation of proteins, a process that regulates a myriad of eukaryotic cellular functions. The first cullin-RING ligase discovered, yeast SCFCdc4, functions with the conjugating enzyme Cdc34 to regulate the cell cycle. Cdc34 orthologs are notable for their highly acidic C-terminal extension. Here we confirm that the Cdc34 acidic C-terminal tail has a role in Cdc34 binding to SCFCdc4 and makes a major contribution to the submicromolar Km of Cdc34 for SCFCdc4. Moreover, we demonstrate that a key functional property of the tail is its acidity. Our analysis also uncovers an unexpected new function for the acidic tail in promoting catalysis. We demonstrate that SCF is functional when Cdc34 is fused to the C terminus of Cul1 and that this fusion retains partial function even when the acidic tail has been deleted. The Cdc34-SCF fusion proteins that lack the acidic tail must interact in a fundamentally different manner than unfused SCF and wild type Cdc34, demonstrating that distinct mechanisms of E2 recruitment to E3, as is seen in nature, can sustain substrate ubiquitylation. Finally, a search of the yeast proteome uncovered scores of proteins containing highly acidic stretches of amino acids, hinting that electrostatic interactions may be a common mechanism for facilitating protein assembly.  相似文献   

16.
NEDD8/Rub1 is a ubiquitin (Ub)-like post-translational modifier that is covalently linked to cullin (Cul)-family proteins in a manner analogous to ubiquitylation. NEDD8 is known to enhance the ubiquitylating activity of the SCF complex (composed of Skp1, Cul-1, ROC1 and F-box protein), but the mechanistic role is largely unknown. Using an in vitro reconstituted system, we report here that NEDD8 modification of Cul-1 enhances recruitment of Ub-conjugating enzyme Ubc4 (E2) to the SCF complex (E3). This recruitment requires thioester linkage of Ub to Ubc4. Our findings indicate that the NEDD8-modifying system accelerates the formation of the E2-E3 complex, which stimulates protein polyubiquitylation.  相似文献   

17.
Ubiquitin ligases direct the transfer of ubiquitin onto substrate proteins and thus target the substrate for proteasome-dependent degradation. SCF complexes are a family of ubiquitin ligases composed of a common core of components and a variable component called an F-box protein that defines substrate specificity. Distinct SCF complexes, defined by a particular F-box protein, target different substrate proteins for degradation. Although a few have been identified to be involved in important biological pathways, such as the cell division cycle and coordinating cellular responses to changes in environmental conditions, the role of the overwhelming majority of F-box proteins is not clear. Creating inhibitors that will block the in vivo activities of specific SCF ubiquitin ligases may provide identification of substrates of these uncharacterized F-box proteins. Using Saccharomyces cerevisiae as a model system, we demonstrate that overproduction of polypeptides corresponding to the amino terminus of the F-box proteins Cdc4p and Met30p results in specific inhibition of their SCF complexes. Analyses of mutant amino-terminal alleles demonstrate that the interaction of these polypeptides with their full-length counterparts is an important step in the inhibitory process. These results suggest a common means to inhibit specific SCF complexes in vivo.  相似文献   

18.
Selective protein degradation by the ubiquitin-proteosome pathway has recently emerged as a powerful regulatory mechanism in a wide variety of cellular processes. Ubiquitin conjugation requires the sequential activity of three enzymes or protein complexes called the ubiquitin-activating enzyme (E1), the ubiquitin-conjugating enzyme (E2), and the ubiquitin-protein ligase (E3). In most eukaryotes, there are a small number of similar E1 isoforms without apparent functional specificity. The specific selection of target proteins is accomplished by the E2 and E3 proteins. One of the best-characterized families of E3s are the SCF complexes. The SCF is composed of a cullin (Cdc53), SKP1, RBX1 and one member of a large family of proteins called F-box proteins. The function of the F-box protein is to interact with target proteins. In some cases, the stability of the F-box protein may regulate activity of the SCF complex. In addition, post-translational modification of the cullin subunit by the ubiquitin-like protein RUB/NEDD8 appears to regulate SCF function. In plants, the SCF has so far been implicated in floral development, circadian clock, and response to the plant growth regulators auxin and jasmonic acid.  相似文献   

19.
Cdc34/Ubc3 is a ubiquitin-conjugating enzyme that functions in targeting proteins for proteasome-mediated degradation at the G1 to S cell cycle transition. Elevation of Cdc34 protein levels by microinjection of bacterially expressed Cdc34 into mammalian cells at prophase inhibited chromosome congression to the metaphase plate with many chromosomes remaining near the spindle poles. Chromosome condensation and nuclear envelope breakdown occurred normally, and chromosomes showed oscillatory movements along mitotic spindle microtubules. Most injected cells arrested in a prometaphase-like state. Kinetochores, even those of chromosomes that failed to congress, possessed the normal trilaminar plate ultrastructure. The elevation of Cdc34 protein levels in early mitosis selectively blocked centromere protein E (CENP-E), a mitotic kinesin, from associating with kinetochores. Other proteins, including two CENP-E-associated proteins, BubR1 and phospho-p42/p44 mitogen-activated protein kinase, and mitotic centromere-associated kinesin, cytoplasmic dynein, Cdc20, and Mad2, all exhibited normal localization to kinetochores. Proteasome inhibitors did not affect the prometaphase arrest induced by Cdc34 injection. These studies suggest that CENP-E targeting to kinetochores is regulated by ubiquitylation not involving proteasome-mediated degradation.  相似文献   

20.
Far1 is a bifunctional protein that is required to arrest the cell cycle and establish cell polarity during yeast mating. Here we show that SCF(Cdc4) ubiquitylates Far1 in the nucleus, which in turn targets the multi-ubiquitylated protein to 26S proteasomes most likely located at the nuclear envelope. In response to mating pheromones, a fraction of Far1 was stabilized after its export into the cytoplasm by Ste21/Msn5. Preventing nuclear export destabilized Far1, while conversely cytoplasmic Far1 was stabilized, although the protein was efficiently phosphorylated in a Cdc28-Cln-dependent manner. The core SCF subunits Cdc53, Hrt1 and Skp1 were distributed in the nucleus and the cytoplasm, whereas the F-box protein Cdc4 was exclusively nuclear. A cytoplasmic form of Cdc4 was unable to complement the growth defect of cdc4-1 cells, but it was sufficient to degrade Far1 in the cytoplasm. Our results illustrate the importance of subcellular localization of F-box proteins, and provide an example of how an extracellular signal regulates protein stability at the level of substrate localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号