首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human mesenchymal stem cells (hMSCs) may be used for therapeutic applications. Culture conditions such as the serum source may impact on cell quality and the onset of replicative senescence. We have examined the effect of culturing hMSCs in autologous serum (AS) versus fetal bovine serum (FBS) on factors involved in in vitro replicative senescence. hMSCs from four donors were cultured in 10% FBS or 10% AS until they reached senescence. Cells were harvested at early passage and near senescence to study factors known to be involved in cellular senescence. The number of population doublings till senescence was similar for cells cultured in FBS, but varied greatly for hMSCs cultured in AS. FBS cells accumulated in S phase of cell cycle. This could not be explained by increased expression of cell cycle inhibitor proteins. Heat shock proteins were upregulated in AS compared to FBS cells. Reactive oxygen species and nitric oxide were upregulated in senescent FBS cells. Telomeres were shorter in senescent cells, more significantly in FBS cells. The source of serum was a determinant for the time till senescence in cultured hMSC. Serum source affected aspects of cell cycle regulation and the levels of heat shock proteins. Several mechanisms are likely to be responsible for replicative senescence in hMSC. Insight into the molecular details of how serum factors impacts on these mechanisms is important for the safe use of hMSCs in clinical applications.  相似文献   

2.
Cellular senescence in cancer and aging   总被引:17,自引:0,他引:17  
Collado M  Blasco MA  Serrano M 《Cell》2007,130(2):223-233
Cellular senescence, a state of irreversible growth arrest, can be triggered by multiple mechanisms including telomere shortening, the epigenetic derepression of the INK4a/ARF locus, and DNA damage. Together these mechanisms limit excessive or aberrant cellular proliferation, and so the state of senescence protects against the development of cancer. Recent evidence suggests that cellular senescence also may be involved in aging.  相似文献   

3.
Periodontal ligament stem cells (PDLSCs), as potential “seed cells” for periodontal tissue repair and regeneration, require to be expanded in vitro for a large scale. Senescence of PDLSCs occurred during long‐term culture may compromise the therapeutic effects of PDLSCs. Medium supplements may be useful in antisenescence. However, the effects and mechanisms of vitamin C (Vc) treatment on PDLSCs during long‐term culture are still unclear. In this study, we identified that Vc‐treated PDLSCs cells maintained a slender morphology, higher growth rate and migration capacity, stemness, and osteogenic differentiation capability during a long‐term culture. Moreover, we also identified that Notch3 was significantly upregulated during the cell senescence, and Vc treatment alleviated the senescence of PDLSCs through inhibition of Notch3 during long‐term culture. In summary, Vc treatment suppressed PDLSCs senescence by reducing the expression of Notch3 and might be a simple and useful strategy to inhibit cellular senescence during the cell long‐term culture.  相似文献   

4.
Normal cells, with few exceptions, cannot proliferate indefinitely. Cell populations--in vivo and in culture--generally undergo only a limited number of doublings before proliferation invariably and irreversibly ceases. This process has been termed the finite lifespan phenotype or cellular senescence. There is long-standing, albeit indirect, evidence that cellular senescence plays an important role in complex biological processes as diverse as normal growth control, differentiation, development, aging, and tumorigenesis. In recent years, it has been possible to develop a molecular framework for understanding some of the fundamental features of cellular senescence. This framework derives primarily from the physiology, genetics, and molecular biology of cells undergoing senescence in culture. Our understanding of senescence, and the mechanisms that control it, is still in its infancy. Nonetheless, recent data raise some intriguing possibilities regarding potential molecular bases for the links between senescence in culture and normal and abnormal growth control, differentiation, and aging.  相似文献   

5.
Primary mouse embryonic fibroblasts (MEFs) are a popular tool for molecular and cell biology studies. However, when MEFs are grown in vitro under standard tissue culture conditions, they proliferate only for a limited number of population doublings (PD) and eventually undergo cellular senescence. Presently, the molecular mechanisms halting cell cycle progression and establishing cellular senescence under these conditions are unclear. Here, we show that a robust DNA damage response (DDR) is activated when MEFs undergo replicative cellular senescence. Senescent cells accumulate senescence-associated DDR foci (SDFs) containing the activated form of ATM, its phosphorylated substrates and γH2AX. In senescent MEFs, DDR markers do not preferentially accumulate at telomeres, the end of linear chromosomes. It has been observed that proliferation of MEFs is extended if they are cultured at low oxygen tension (3% O2). We observed that under these conditions, DDR is not observed and senescence is not established. Importantly, inactivation of ATM in senescent MEFs allows escape from senescence and progression through the S-phase. Therefore, MEFs undergoing cellular senescence arrest their proliferation due to the activation of a DNA damage checkpoint mediated by ATM kinase. Finally, we observed that spontaneously immortalized proliferating MEFs display markers of an activated DDR, indicating the presence of chromosomal DNA damage in these established cell lines.  相似文献   

6.
Cellular senescence is described to be a consequence of telomere erosion during the replicative life span of primary human cells. Quiescence should therefore not contribute to cellular aging but rather extend lifespan. Here we tested this hypothesis and demonstrate that cultured long-term quiescent human fibroblasts transit into senescence due to similar cellular mechanisms with similar dynamics and with a similar maximum life span as proliferating controls, even under physiological oxygen conditions. Both, long-term quiescent and senescent fibroblasts almost completely fail to undergo apoptosis. The transition of long-term quiescent fibroblasts into senescence is also independent of HES1 which protects short-term quiescent cells from becoming senescent. Most significantly, DNA damage accumulates during senescence as well as during long-term quiescence at physiological oxygen levels. We suggest that telomere-independent, potentially maintenance driven gradual induction of cellular senescence during quiescence is a counterbalance to tumor development.  相似文献   

7.
Cell senescence is the limited ability of primary human cells to divide when cultured in vitro. This eventual cessation of division is accompanied by a specific set of changes in cell physiology, morphology, and gene expression. Such changes in phenotype have the potential to contribute to human ageing and age-related diseases. Until now, senescence has largely been studied as an in vitro phenomenon, but recent data have for the first time directly demonstrated the presence of senescent cells in aged human tissues. Although a direct causal link between the ageing of whole organisms and the senescence of cells in culture remains elusive, a large body of data is consistent with cell senescence contributing to a variety of pathological changes seen in the aged. This review considers the in vitro phenotype of cellular senescence and speculates on the various possible routes whereby the presence of senescent cells in old bodies may affect different tissue systems.  相似文献   

8.
Several cellular mechanisms affect nuclear morphology which can therefore be used to assess certain processes. Here, we present an analytic tool to quantify the number of cells in a population that present characteristics of senescence, apoptosis or nuclear irregularities through nuclear morphometric analysis. The tool presented here is based on nuclear image analysis and evaluation of size and regularity of adhered cells in culture. From 46 measurements of nuclear morphometry, principal component analysis filtered four measurements that best separated regular from irregular nuclei. These measurements, namely aspect, area box, radius ratio and roundness were combined into a single nuclear irregularity index (NII). Normal nuclei are used to set the parameters for a given cell type, and different nuclear phenotypes are separated in an area versus NII plot. The tool was validated with β-gal staining for senescence and annexin or caspases inhibitor for apoptosis as well as several treatments that induce different cellular phenotypes. This method provides a direct and objective way of screening normal, senescent, apoptotic and nuclear irregularities which may occur during failed mitosis or mitotic catastrophe, which may be very useful in basic and clinical research.  相似文献   

9.
Normal human somatic cells, unlike cancer cells, stop dividing after a limited number of cell divisions through the process termed cellular senescence or replicative senescence, which functions as a tumor-suppressive mechanism and may be related to organismal aging. By means of the cDNA subtractive hybridization, we identified eight genes upregulated during normal chromosome 3-induced cellular senescence in a human renal cell carcinoma cell line. Among them is the DNCI1 gene encoding an intermediate chain 1 of the cytoplasmic dynein, a microtubule motor that plays a role in chromosome movement and organelle transport. The DNCI1 mRNA was also upregulated during in vitro aging of primary human fibroblasts. In contrast, other components of cytoplasmic dynein showed no significant change in mRNA expression during cellular aging. Cell growth arrest by serum starvation, contact inhibition, or gamma-irradiation did not induce the DNCI1 mRNA, suggesting its specific role in cellular senescence. The DNCI1 gene is on the long arm of chromosome 7 where tumor suppressor genes and a senescence-inducing gene for a group of immortal cell lines (complementation group D) are mapped. This is the first report that links a component of molecular motor complex to cellular senescence, providing a new insight into molecular mechanisms of cellular senescence.  相似文献   

10.
The skin is privileged because several skin-derived stem cells (epithelial stem cells from epidermis and its appendages, mesenchymal stem cells from dermis and subcutis, melanocyte stem cells) can be efficiently captured for therapeutic use. Main indications remain the permanent coverage of extensive third degree burns and healing of chronic cutaneous wounds, but recent advances in gene therapy technology open the door to the treatment of disabling inherited skin diseases with genetically corrected keratinocyte stem cells. Therapeutic skin stem cells that were initially cultured in research or hospital laboratories must be produced according strict regulatory guidelines, which ensure patients and medical teams that the medicinal cell products are safe, of constant quality and manufactured according to state-of-the art technology. Nonetheless, it does not warrant clinical efficacy and permanent engraftment of autologous stem cells remains variable. There are many challenges ahead to improve efficacy among which to keep telomere-dependent senescence and telomere-independent senescence (clonal conversion) to a minimum in cell culture and to understand the cellular and molecular mechanisms implicated in engraftment. Finally, medicinal stem cells are expansive to produce and reimbursement of costs by health insurances is a major concern in many countries.  相似文献   

11.
Oxidative stress in cell culture: an under-appreciated problem?   总被引:13,自引:0,他引:13  
Halliwell B 《FEBS letters》2003,540(1-3):3-6
Cell culture studies have given much valuable information about mechanisms of metabolism and signal transduction and of regulation of gene expression, proliferation, senescence, and death. However, cells in culture may behave differently from cells in vivo in many ways. One of these is that cell culture imposes a state of oxidative stress on cells. I argue that cells that survive and grow in culture might use ROS-dependent signal transduction pathways that rarely or never operate in vivo. A further problem is that cell culture media can catalyse the oxidation of compounds added to them, resulting in apparent cellular effects that are in fact due to oxidation products such as ROS. Such artefacts may have affected many studies on the effects of ascorbate, thiols, flavonoids and other polyphenolic compounds on cells in culture.  相似文献   

12.
How much do we know about the biology of aging from cell culture studies? Most normal somatic cells have a finite potential to divide due to a process termed cellular or replicative senescence. A growing body of evidence suggests that senescence evolved to protect higher eukaryotes, particularly mammals, from developing cancer. We now know that telomere shortening, due to the biochemistry of DNA replication, induces replicative senescence in human cells. However, in rodent cells, replicative senescence occurs despite very long telomeres. Recent findings suggest that replicative senescence is just the tip of the iceberg of a more general process termed cellular senescence. It appears that cellular senescence is a response to potentially oncogenic insults, including oxidative damage. In young organisms, growth arrest by cell senescence suppresses tumor development, but later in life, due to the accumulation of senescent cells which secret factors that can disrupt tissues during aging, cellular senescence promotes tumorigenesis. Therefore, antagonistic pleiotropy may explain in part, if not in whole, the apparently paradoxical effects of cellular senescence, though this still remains an open question.  相似文献   

13.
Cellular senescence occurs not only in cultured fibroblasts, but also in undifferentiated and specialized cells from various tissues of all ages, in vitro and in vivo. Here, we review recent findings on the role of cellular senescence in immune cell fate decisions in macrophage polarization, natural killer cell phenotype, and following T‐lymphocyte activation. We also introduce the involvement of the onset of cellular senescence in some immune responses including T‐helper lymphocyte‐dependent tissue homeostatic functions and T‐regulatory cell‐dependent suppressive mechanisms. Altogether, these data propose that cellular senescence plays a wide‐reaching role as a homeostatic orchestrator.  相似文献   

14.
Cellular senescence constitutes a generally irreversible proliferation barrier, accompanied by macromolecular damage and metabolic rewiring. Several senescence types have been identified based on the initiating stimulus, such as replicative (RS), stress-induced (SIS) and oncogene-induced senescence (OIS). These senescence subtypes are heterogeneous and often develop subset-specific phenotypes. Reduced protein synthesis is considered a senescence hallmark, but whether this trait pertains to various senescence subtypes and if distinct molecular mechanisms are involved remain largely unknown. Here, we analyze large published or experimentally produced RNA-seq and Ribo-seq datasets to determine whether major translation-regulating entities such as ribosome stalling, the presence of uORFs/dORFs and IRES elements may differentially contribute to translation deficiency in senescence subsets. We show that translation-regulating mechanisms may not be directly relevant to RS, however uORFs are significantly enriched in SIS. Interestingly, ribosome stalling, uORF/dORF patterns and IRES elements comprise predominant mechanisms upon OIS, strongly correlating with Notch pathway activation. Our study provides for the first time evidence that major translation dysregulation mechanisms/patterns occur during cellular senescence, but at different rates depending on the stimulus type. The degree at which those mechanisms accumulate directly correlates with translation deficiency levels. Our thorough analysis contributes to elucidating crucial and so far unknown differences in the translation machinery between senescence subsets.  相似文献   

15.
Despite the growing interest by researchers into cellular senescence, a hallmark of cellular aging, its role in human skin remains equivocal. The skin is the largest and most accessible human organ, reacting to the external and internal environment. Hence, it is an organ of choice to investigate cellular senescence and to target root-cause aging processes using senolytic and senomorphic agents, including naturally occurring plant-based derivatives. This review presents different aspects of skin cellular senescence, from physiology to pathology and signaling pathways. Cellular senescence can have both beneficial and detrimental effects on the skin, indicating that both prosenescent and antisenescent therapies may be desirable, based on the context. Knowledge of molecular mechanisms involved in skin cellular senescence may provide meaningful insights for developing effective therapeutics for senescence-related skin disorders, such as wound healing and cosmetic skin aging changes.  相似文献   

16.
Can the immune system be reactivated continuously throughout the lifetime of an organism or is there a finite point at which repeated antigenic challenge leads to the loss of lymphocyte function or the cells themselves or both? Replicative senescence and exhaustion are processes that control T cell proliferative activity and function; however, there is considerable confusion over the relationship between these two intrinsic cellular control mechanisms. In this Opinion article, we compare the molecular regulation of senescence and exhaustion in T cells. Available data suggest that both processes are regulated independently of each other and that it may be safer to block exhaustion than senescence to enhance immunity.  相似文献   

17.
H2O2 has been the most commonly used inducer for stress-induced premature senescence (SIPS), which shares features of replicative senescence. However, there is still uncertainty whether SIPS and replicative senescence differ or utilize different pathways. 'Young' human diploid fibroblasts (HDFs), treated with prolonged low doses of hydrogen peroxide, led to irreversible cellular senescence. Cells exhibited senescent-morphological features, irreversible G1 cell cycle arrest and irreversible senescence-associated beta-galactosidase positivity. The appearance of these cellular senescence markers was accompanied by significant increases of p21, gadd45 expression and p53 binding activity, as well as a significant decline in DNA repair capability and accelerated telomere shortening. Our results suggest that multiple pathways might be involved in oxidative SIPS, including genes related to DNA-damage-and-repair and telomere shortening, and that SIPS shares the same mechanisms with replicative senescence in vivo. Our findings indicate that several aging theories can be merged together by a common mechanism of oxidative damage, and that the level of oxidative DNA-damage-and-repair capacity may be exploited as reliable markers of cell senescence.  相似文献   

18.
Cellular senescence was first reported five decades ago as a state of long-term growth inhibition in viable, metabolically active cells cultured in vitro. However, evidence that senescence occurs in vivo and underlies pathophysiologic processes has only emerged over the past few years. Coincident with this increased knowledge, understanding of the mechanisms that control senescent-cell gene expression programs has also recently escalated. Such mechanisms include a prominent group of regulatory factors (miRNA), a family of small, noncoding RNAs that interact with select target mRNAs and typically repress their expression. Here, we review recent reports that miRNAs are key modulators of cellular senescence, and we examine their influence upon specific senescence-regulatory proteins. We discuss evidence that dysregulation of miRNA-governed senescence programs underlies age-associated diseases, including cancer.  相似文献   

19.
Replicative senescence has fundamental implications on cell morphology, proliferation, and differentiation potential. Here, we describe a simple method to track long-term culture based on continuous DNA-methylation changes at six specific CpG sites. This epigenetic senescence signature can be used as biomarker for various cell types to predict the state of cellular senescence with regard to the number of passages, population doublings, or days of in vitro culture.  相似文献   

20.
Much has been learned about the mechanisms underlying cellular senescence. The pathways leading to senescence appear to vary, depending on the cell type and cell culture conditions. In this respect, little is known about senescence of human peritoneal mesothelial cells (HPMC). Previous studies have significantly differed in the reported proliferative lifespan of HPMC. Therefore, in the present study, we have examined how HPMC enter state of senescence under conditions typically used for HPMC culture. HPMC were isolated from omentum and grown into senescence. The cultures were assessed for the growth rate, the presence of senescence markers, activation of cell-cycle inhibitors, and the oxidative stress. HPMC were found to reach, on average, six population doublings before senescence. The terminal growth arrest was associated with decreased expression of Ki67 antigen, increased percentage of cells in the G1 phase, reduced early population doubling level cDNA-1 mRNA expression, and the presence of senescence-associated beta-galactosidase. Compared with early-passage cells, the late-passage HPMC exhibited increased expression of p16INK4a but not of p21Cip1. In addition, these cells generated more reactive oxygen species and displayed increased presence of oxidatively modified DNA (8-hydroxy-2'-deoxyguanosine). These results demonstrate that early onset of senescence in omentum-derived HPMC may be associated with oxidative stress-induced upregulation of p16INK4a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号