首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A method has been developed that permits precise control of release from catabolite repression in Saccharomyces cerevisiae. It consists of transferring cells growing exponentially on 5% glucose to derepression medium at high cell density. Derepression then proceeds with reproducible kinetics and is complete within 6 to 7.5 h for various intra- and extramitochondrial markers, in the absence of any substantial increase in cellular dry weight or protein. Nuclear (and mitochondrial) deoxyribonucleic acid synthesis can be interrupted in certain thermosensitive (cdc) mutants at the nonpermissive temperature; a shift to this temperature before the onset of derepression has no effect on its outcome.  相似文献   

2.
The potential of nanomelic chondrocytes to synthesize chondroitin sulfate was investigated by providing the mutant cells with p-nitrophenyl-beta-D-xyloside, a compound which acts as an artificial acceptor for glycosaminoglycan synthesis. Under these conditions the synthesis of chondroitin sulfate in nanomelic and normal chondrocytes is comparable. The chondroitin sulfate synthesized by the mutant is indistinguishable in molecular size and composition from that synthesized by similarly treated normal chondrocytes.  相似文献   

3.
Wu J  Yang J  Klein PS 《Developmental biology》2005,279(1):220-232
While Wnt signaling is known to be involved in early steps of neural crest development, the mechanism remains unclear. Because Wnt signaling is able to posteriorize anterior neural tissues, neural crest induction by Wnts has been proposed to be an indirect consequence of posteriorization of neural tissues rather than a direct effect of Wnt signaling. To address the relationship between posteriorization and neural crest induction by Wnt signaling, we have used gain of function and loss of function approaches in Xenopus to modulate the level of Wnt signaling at multiple points in the pathway. We find that modulating the level of Wnt signaling allows separation of neural crest induction from the effects of Wnts on anterior-posterior neural patterning. We also find that activation of Wnt signaling induces ectopic neural crest in the anterior region without posteriorizing anterior neural tissues. In addition, Wnt signaling induces neural crest when its posteriorizing activity is blocked by inhibition of FGF signaling in neuralized explants. Finally, depletion of beta-catenin confirms that the canonical Wnt pathway is required for initial neural crest induction. While these observations do not exclude a role for posteriorizing signals in neural crest induction, our data, together with previous observations, strongly suggest that canonical Wnt signaling plays an essential and direct role in neural crest induction.  相似文献   

4.
Monocytes isolated from human blood differentiate into macrophage-like cells when maintained in vitro for 3-5 days on plastic or glass culture dishes. In the process the cells display characteristic morphological changes, and in addition, a transition in glycosaminoglycan biosynthesis, from the production of chondroitin 4-sulphate to the formation of a polysaccharide containing 20% 4,6-disulphated disaccharide units [Kolset, Kjellén, Seljelid & Lindahl (1983) Biochem. J. 210, 661-667]. Cells were incubated with inorganic [35S]sulphate on day 1 or day 6 in culture, in the presence or absence of benzyl beta-D-xyloside, and labelled polysaccharide was isolated from the culture medium. In the presence of xyloside, the secretion of proteoglycans (90% galactosaminoglycan) was inhibited in a dose-dependent fashion and replaced by release of single polysaccharide chains, the size of which decreased with increasing dose of xyloside. The single polysaccharide chains produced on day 6 in the presence of 0.5 mM-xyloside showed the same proportion of disulphated disaccharide units as did the corresponding control material. Day-1 polysaccharide contained negligible amounts of this component, irrespective of the presence or absence of xyloside. It is concluded that the regulatory mechanism that induces 'oversulphation' during the differentiation process operates independently of any association between the polysaccharide chains and the core protein. Moreover, cells maintained in the presence of 0.5 mM-xyloside throughout a 6-day culture period showed the same morphological change, indicative of differentiation into macrophage-like cells, as did untreated control cells. The xyloside did not significantly affect the cytotoxicity of the monocytes, or of the differentiated macrophage-like cells, toward tumour cells.  相似文献   

5.
6.
7.
The effect of human tumor necrosis factor (TNF) on early-passage HL-60 cells was studied. A transient phase of increased [3H]thymidine (TdR) incorporation was noted at 20-24 hr of exposure to TNF. This increase was disproportionate to the much slighter stimulation of the percentage of S-phase cells, which was measured by flow cytometry. Evidence for increased metabolic trapping of [3H]TdR following TNF treatment was apparent from whole cell uptake experiments. The salvage pathway enzyme TdR kinase was therefore measured and was found to be elevated comparably to [3H]TdR uptake. The mechanism of TNF regulation of TdR kinase was further investigated by a series of combination treatment experiments using other biologic factors and pharmacologic inhibitors of various intracellular steps. The response to TNF was not potentiated or reproduced by IL-1, IL-2, IL-3, IL-4, G-CSF, M-CSF, GM-CSF or alpha- or gamma-interferon. Blockers of early signal transduction steps, including H7, W7, sphingosine, and pertussis toxin, failed to inhibit TNF stimulation of [3H]TdR incorporation. mRNA synthesis inhibition with alpha-amanitin blocked this TNF effect, as did cAMP but not cGMP analogues. A sensitizing effect was noted with amiloride or cytochalasin B, characterized by greater relative increases of [3H]TdR incorporation and TdR kinase activity in response to TNF. In the presence of cytochalasin B, TNF treatment resulted in no change or slight decreases in the percentage of S-phase cells. Regulation of TdR kinase could thereby be dissociated from the usual cell cycle control. This study thus documents a unique example of stimulation of thymidine salvage pathway metabolism by a biologic factor, dissociable from overall cell cycle regulation.  相似文献   

8.
Since administration of 6-aminonicotinamide (10 micrograms) to day-4 chick embryos in ovo was shown to induce micromelial limbs, biosynthesis of cartilage-characteristic proteoglycan-H (PG-H) as an important index of limb chondrogenesis was examined in day-7 normal and micromelial hind limbs by biochemical and immunological methods. (1) Metabolic labelling of the micromelial limbs with [6-3H]glucosamine and either [35S]sulphate or [35S]methionine, followed by analyses of labelled PG-H by glycerol density-gradient centrifugation under dissociative conditions, showed a marked reduction in the PG-H synthesis. (2) PG-H synthesized by the micromelial limbs was much lower than that synthesized by the normal limbs in the biosynthetic ratio of chondroitin sulphate to keratan sulphate and glycoprotein-type oligosaccharide, although no significant difference was observed in the immunological properties of these proteoglycans. (3) The degree of sulphation of chondroitin sulphates of PG-H was lowered in the micromelial limbs as judged by the increase of unsulphated disaccharide (delta Di-OS) released by chrondroitinase ABC digestion, although there were no significant differences between the normal and the micromelial limbs in the average molecular size (Mr = 38,000) of labelled chondroitin sulphates of PG-H. (4) Addition of beta-D-xyloside, an artificial initiator for chondroitin sulphate synthesis, to the micromelial limbs in culture recovered the incorporation of labelled glucosamine into chondroitin sulphate to that comparable with the normal control with beta-D-xyloside, although the incorporation of [35S]sulphate was lower in the micromelia than in the control with beta-D-xyloside. These results suggest that the reduction in the biosynthesis of the PG-H as well as the production of altered forms of PG-H induced by 6-aminonicotinamide during a critical period of limb morphogenesis may be an important factor for the micromelia.  相似文献   

9.
Primary avian tendon (PAT) cells increase the production of procollagen from 10-12% to 40-50% of total protein synthesis in response to the addition of ascorbate and an increasing cell density. We now show that prolyl hydroxylase (PH) also increases its activity by greater than five-fold in response to increasing cell density; but unlike procollagen production, this is independent of the presence of ascorbate. The increased activity is a result of greater enzyme production and not a shift in the ratio of inactive to active forms which remains constant at about 10% of the total enzyme proteins. We present the possibility that at low cell density the levels of PH activity could limit production of collagen.  相似文献   

10.
Digital imaging fluorescence microscopy was used to study the effect of tert-butyl hydroperoxide (TBHP) on the cytosolic free calcium concentration ([Ca2+]i) of single rat hepatocytes in primary culture. Within minutes of the addition of TBHP, individual hepatocytes displayed one or more peaks of increased [Ca2+]i that promptly returned to the prestimulation level. This was followed by a slower increase of [Ca2+]i that reached a plateau of 696 +/- 260 nM (basal 194 +/- nM) after 20 min. Another rise in [Ca2+]i, abrupt and much larger, preceded the death of the cells after about 45 min. Pretreatment of the hepatocytes with deferoxamine, a ferric iron chelator, or the addition of the antioxidants N,N'-diphenyl-p-phenylenediamine or catechol prevented the loss of viability. Neither the number of hepatocytes displaying the initial [Ca2+]i transients nor the magnitude of these oscillations was affected by deferoxamine, N,N'-diphenyl-p-phenyl-enediamine, or catechol. However, both the plateau phase and the abrupt rise in [Ca2+]i were prevented. Treatment of the hepatocytes with TBHP in a low calcium buffer (less than 2 microM Ca2+) reduced or abolished the initial [Ca2+]i transients and eliminated both the plateau phase and abrupt rise in [Ca2+]i. The onset of cell death was delayed by 10 min in the low calcium medium. Addition of 3.5 mM EGTA to the cultures lowered the basal calcium concentration, prevented both the initial [Ca2+]i spikes and the delayed changes, and further prolonged the onset of cell death. These data indicate that the killing of the cultured hepatocytes by TBHP can be dissociated from changes in intracellular calcium homeostasis. An influx of extracellular Ca2+ ions may aggravate somewhat the mechanisms of cell injury by an oxidative stress and accelerate the time of onset of cell death.  相似文献   

11.
Pre-eclampsia (PE) is a major cause of hypertension in maternal and fetal. Atlastin-1 (ATL1), one regulator of endoplasmic reticulum (ER) morphology, participates in tubular ER formation and protein synthesis. The objective of this study is to investigate the role and molecular mechanism of ATL1 in PE. GEO databases showed that ATL1 was upregulated in PE patients. Our data also found that ATL1 was highly expressed in PE placental tissues. The cell viability, proliferation, migration, and invasion of HTR-8/SVneo cells increased/decreased after the downregulation/upregulation of ATL1. The mTOR pathway is the downstream pathway of ATL1. The levels of p-p70S6K and p-mTOR were increased/decreased after the downregulation/upregulation of ATL1. Moreover, rapamycin, an inhibitor of mTOR pathway, reversed the promotive effect of siATL1 on proliferation, migration, and invasion in HTR-8/SVneo cells. In conclusion, ATL1 inhibits the proliferation and invasion of trophoblast cells via the inhibition of the mTOR signaling pathway in HTR-8/SVneo cells.  相似文献   

12.
Single-stranded oligonucleotide (SSO)-mediated gene modification is a newly developed tool for site-specific gene repair in mammalian cells; however, the corrected cells always show G2/M arrest and cannot divide to form colonies. This phenomenon and the unclear mechanism seriously challenge the future application of this technique. In this study, we developed an efficient SSO-mediated DNA repair system based on double-stranded break (DSB) induction. We generated a mutant EGFP gene with insertions of 24 bp to 1.6 kb in length as a reporter integrated in mammalian cell lines. SSOs were successfully used to delete the insertion fragments upon DSB induction at a site near the insertion. We demonstrated that this process is dependent on the ATM/ATR pathway. Importantly, repaired cell clones were viable. Effects of deletion length, SSO length, strand bias, and SSO modification on gene repair frequency were also investigated.  相似文献   

13.
Schwann cells synthesize two heparan sulfate proteoglycans, one that is a component of the Schwann cell basement membrane and a smaller one that is an integral component of the Schwann cell plasma membrane. To determine the functions of these molecules, Schwann cell-nerve cell cultures were grown in medium containing a specific inhibitor of proteoglycan biosynthesis, 4-methylumbelliferyl-beta-D-xyloside. Treatment with 1 mM beta-D-xyloside caused a 90% reduction in the accumulation of 35SO4-labeled proteoglycans in the cell layer of the cultures. Gel filtration analysis revealed that both the basement membrane and plasma membrane proteoglycans were affected. Inhibition of proteoglycan biosynthesis was accompanied by an inhibition of laminin deposition into extracellular matrix as determined by immunostaining of cultures and by immunoblotting of cell-associated proteins. This occurred even though there was no decrease in the amount of laminin detected in the medium of beta-D-xyloside-treated cultures. Deposition of collagen type IV was similarly affected. In addition, there was no myelin produced in beta-D-xyloside treated cultures. However, when beta-xyloside-treated cultures were supplied with exogenous basement membrane, Schwann cells produced numerous myelin segments. These results indicate that Schwann cell proteoglycans play an essential role in basement membrane assembly, and that the integral plasma membrane proteoglycan is not required for the basement membrane to exert its effects on Schwann cell differentiation.  相似文献   

14.
15.
The role of CD7, a T cell differentiation antigen, in T cell function is not known at present; this study evaluates the effect of anti-CD7 mAb in PMBC cultures activated with suboptimal concentrations of lectins, antigens, and anti-CD3 mAb. We found that the inclusion of anti-CD7 resulted in increased IL-2 production and IL-2R-alpha expression in these cultures. H-7, a protein kinase C (PKC) inhibitor, and genistein, a protein tyrosine kinase (PTK) inhibitor, significantly suppressed the proliferation of T cells in comitogenic assays. This suggested that the comitogenic effect mediated by CD7 molecule involved both the PKC and the PTK pathways of T cell activation. These drugs appeared to affect the CD7-mediated effects by inhibiting the IL-2 autocrine pathway, especially the up-regulation of IL-2R-alpha since inhibition was not relieved with exogenous rIL-2. Taken together, our results suggest that CD7 augments T cell function by up-regulating IL-2R-alpha expression and IL-2 production via multiple pathways of protein phosphorylation.  相似文献   

16.
Expression of c-myc and macromolecular synthesis have been associated with physiological cell death. We have studied their requirement for the death of factor (interleukin-3)-dependent cells (FDC-P1) bearing an inducible bcl-2 expression construct. FDC-P1 cells expressing bcl-2 turned off expression of c-myc when deprived of interleukin-3 but remained viable as long as bcl-2 was maintained. A subsequent decline in Bcl-2 allowed the cells to undergo apoptosis directly from G0, in the absence of detectable c-myc expression. Thus c-myc expression may lead to apoptosis in some cases but is not directly involved in the mechanism of physiological cell death that can be controlled by Bcl-2. The macromolecular synthesis inhibitors actinomycin D and cycloheximide triggered rapid cell death of FDC-P1 cells in the presence of interleukin-3, but the cells could be protected by Bcl-2. Thus, the cell death machinery can exist in a quiescent state and can be activated by mechanisms that do not require synthesis of RNA or protein.  相似文献   

17.
The affinities for hyaluronic acid of newly synthesized proteoglycan from post-confluent rabbit chondrocyte cultures and purified bovine proteoglycan monomer were compared. In mixtures prepared at pH 6.8 the newly synthesized proteoglycan had the lower affinity; however, in mixtures incubated at pH 8.5 for 24 h before addition of hyaluronic acid, the newly synthesized proteoglycan exhibited a markedly higher affinity than the bovine monomer. The results suggest that proteoglycan secreted without associated link protein [Plaas, Sandy & Muir (1983) Biochem. J. 214, 855-864] has a low affinity for hyaluronate and that this may be increased during subsequent extracellular processing.  相似文献   

18.

Background

Stromal interaction molecule 1 (STIM1) is a newly discovered Ca2+ sensor on the endoplasmic reticulum which is an indispensable part in the activation of store-operated Ca2+ channels (SOC). Recent studies demonstrate that SOC of pulmonary smooth muscle cells (PASMCs) were upregulated by chronic hypoxia which contribute to the enhanced pulmonary vasoconstriction and vascular remodeling. However, the exact role of STIM1 in the development of chronic hypoxic pulmonary hypertension(HPH) remains unclear.

Methods

In this study we investigated the cellular distribution and expression of STIM1 by immunofluorescence, qRTPCR and Western blotting methods in Wistar rat distal intrapulmonary arteries under normal and chronic hypobaric hypoxic conditions. In vitro, Wistar rat PASMCs were isolated and cultured. PASMCs were transfected with siRNA targeting STIM1 gene by liposome. The expression of STIM1 protein was detected by Western blotting. [3H]-thymidine ([3H]-TdR) incorporation were performed to detect PASMCs proliferation. The cell cycle was analyzed by flow cytometry. The SOC-mediated Ca2+ influx was calculated by Ca2+ fluorescence imaging and the nuclear translocation of NFATc3 was determined by immunofluorescence and Western blot analysis of nuclear extracts.

Results

We found that during the development of HPH and the initiation of vascular remodeling, the mRNA and protein expression levels of STIM1 significantly increased in the distal intrapulmonary arteries. Moderate hypoxia significantly promotes PASMCs proliferation and cell cycle progression. Silencing of STIM1 significantly decreased cellular proliferation and delayed the cell cycle progression induced by hypoxia. Silencing of STIM1 also significantly decreased SOC-mediated Ca2+ influx and inhibited the nuclear translocation of NFATc3 in hypoxic PASMCs.

Conclusion

Our findings suggest that chronic hypobaric hypoxia upregulates the expression of STIM1 in the distal intrapulmonary arteries which plays an important role in the hypoxia-induced PASMCs proliferation via SOC/Ca2+/NFAT pathway and may represent a novel therapeutic target for the prevention of hypoxia pulmonary hypertension.  相似文献   

19.
Pretreatment of cultured chondrosarcoma chondrocytes at 37 degrees C for 15 min with 15 mM diethylcarbamazine (DEC) followed by a 60-min pulse with [35S] sulfate in the presence of DEC resulted in an approximate 40% inhibition of synthesis and a 75% inhibition of secretion of 35S-proteoglycan. The inhibition was dose-related and was not due to a decrease in protein synthesis. Chondrocytes exposed for 75 min to 15 mM DEC, washed, incubated for 17 h in DEC-free medium, and then pulsed with [35S]sulfate showed no inhibition in the rate of synthesis of proteoglycan or in the per cent of radiolabeled proteoglycans exocytosed into the culture medium, indicating full reversibility of the inhibitory effect. When chondrocytes were incubated for 75 min with both 1 mM beta-D-xyloside and 15 mM DEC, secretion of beta-D-xyloside-bound 35S-glycosaminoglycan was inhibited by more than 70% despite an approximate 3-fold increase in intracellular 35S-macromolecules, as compared to cells exposed to beta-D-xyloside alone. Upon removal of DEC, the block in the secretion of beta-D-xyloside-bound 35S-glycosaminoglycans was reversed, although there was a 15-30-min lag in the initiation of exocytosis. Light and electron microscopic examination of chondrocytes after 75 min of incubation with 15 mM DEC revealed large vacuoles, a distended Golgi apparatus, and a distended endoplasmic reticulum which contained electron dense material. Upon removal of DEC, the vacuoles disappeared and distended organelles returned to their normal appearance between 15 and 30 min, coincident with the start of exocytosis of 35S-proteoglycan and beta-D-xyloside-bound 35S-glycosaminoglycan. These biochemical and morphological studies indicate that DEC treatment of chondrosarcoma chondrocytes alters the transport of molecules from the endoplasmic reticulum to the Golgi and the transport of molecules from the Golgi to the cell surface.  相似文献   

20.
Chimaeric alleles were constructed to assay the biological functions of an N-terminal deletion and C-terminal mutations which were found in a naturally occurring mutant of feline vMyc, T17. The mutant alleles were assayed for their ability to transform chick embryo fibroblasts in vitro by a number of criteria, namely the ability to induce morphological transformation, an accelerated growth rate and growth in soft agar. Feline cMyc could transform the avian cells, whilst T17 vMyc could not, and the N-terminal deletion was responsible for conferring the primary transformation defect on the mutant protein. The C-terminal mutations which consist of a point mutation adjacent to the nuclear localisation signal and a point mutation/amino acid insertion within the basic region (BR) could, however, dissociate the Myc-induced parameters of transformation. This effect was a specific function of the BR mutation alone, and the mutation could be transferred into avian cMyc with comparable biological consequences. The BR mutation did not disrupt the sequence specific DNA binding activity of the protein in vivo, despite exerting a biological effect. These data suggest a novel phenotype where the mutation may affect a subset of Myc-regulated genes through altered DNA binding specificity or protein-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号