首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper outlines an investigation on current situation of Spirulina (Arthrospira) industry in Inner Mongolia, an internal region of China with temperate continental climate. More than 20 Spirulina plants have been established in Inner Mongolia since 2001, most of which are located at Wulan Town in the Ordos Plateau. By the end of 2009, the total annual production of Spirulina in the Ordos Plateau surpassed 700 t (dw), which account for ca. 80% of the total productivity of Inner Mongolia, and ca. 20% of China. Besides abundant solar radiation and enough freshwater favorable for Spirulina production, the three technical strategies contribute to the prosperity and success of Spirulina industry in the region: (1) reducing the cost or investment by overall advantages of rich local natural resources with low cost for Spirulina production, such as alkaline lakes, coal, electricity, and sandy land; (2) controlling the culture temperature and to avoid contamination by building plastic greenhouses on raceway ponds, (3) reducing investment by simplifying the construction of the ponds and the greenhouses. As the result, the growth period of Spirulina has been prolonged from about 120 to about 165 days, the cost of Spirulina has decreased by 25–30%, and the quality of products has been enhanced substantially. Inner Mongolia is expected to become the largest base for Spirulina production not only in China, but also in the world in the near future.  相似文献   

2.
Arsenic (As)-contaminated water is a grave health hazard and its removal from water poses a great challenge. Conventional methods are associated with many shortcomings. Biosorption of arsenic using blue-green algae is an interesting alternative to conventional methods. In this article, the results of the biosorption of As(V) as AsO4 ? 3 by live and dead Spirulina sp. are reported. The sorption of arsenic could be explained satisfactorily both by the Freundlich and the Langmuir isotherms. The maximum sorption capacities of live and dead Spirulina were estimated to be 525 and 402mg/g, respectively. These values are high in comparison with those reported for other arsenic sorbents. The sorption kinetics of arsenic by both live and dead Spirulina sp. could be well modeled by Lagergrens pseudosecond order-rate equation. Infrared spectra have been employed to understand how Spirulina sp. binds with arsenate. Scanning electron micrography and fluorescent microscopic images are used to discuss the extent of uptake. Preferential uptake of Cu(II), Ni(II), Cd(II), and AsO4 ?3 by live Spirulina sp. was investigated and explained with the help of rate constants for sorption.  相似文献   

3.
Current knowledge on potential health benefits of Spirulina   总被引:2,自引:0,他引:2  
Spirulina is a microscopic filamentous alga that is rich in proteins, vitamins, essential amino acids, minerals and essential fatty acids like γ-linolenic acid (GLA). It is produced commercially and sold as a food supplement in health food stores around the world. Up to very recently, the interest in Spirulina was mainly in its nutritive value. Currently, however, numerous people are looking into the possible therapeutic effects of Spirulina. Many pre-clinical studies and a few clinical studies suggest several therapeutic effects ranging from reduction of cholesterol and cancer to enhancing the immune system, increasing intestinal lactobacilli, reducing nephrotoxicity by heavy metals and drugs and radiation protection. This paper presents a critical review of some published and unpublished data on therapeutic effects of Spirulina.  相似文献   

4.
Cadmium is an important environmental pollutant and a potent toxicant to bacteria, algae, and fungi. Mechanisms of Cd+2 toxicity and resistance are variable, depending on the organism. The present work reports the use of live and dead Spirulina sp. for sorption of Cd+2. This investigation shows that this biomass takes up substantial amount of Cd+2 ions. IR spectroscopic study, kinetics models, Langmuir & Freundlich adsorption isotherms, scanning electron microscopic analysis of Spirulina sp., and the Spirulina sp. treated with different metal ions have been employed to understand the sorption mechanism. Infrared spectra of live Spirulina treated with Cd+2 ions for different lengths of time have been taken to understand the time dependency of metal interaction.  相似文献   

5.
This study is the first to report that Spirulina complex polysaccharides (CPS) suppress glioma growth by down‐regulating angiogenesis via a Toll‐like receptor 4 signal. Murine RSV‐M glioma cells were implanted s.c. into C3H/HeN mice and TLR4 mutant C3H/HeJ mice. Treatment with either Spirulina CPS or Escherichia coli (E. coli) lipopolysaccharides (LPS) strongly suppressed RSV‐M glioma cell growth in C3H/HeN, but not C3H/HeJ, mice. Glioma cells stimulated production of interleukin (IL)‐17 in both C3H/HeN and C3H/HeJ tumor‐bearing mice. Treatment with E. coli LPS induced much greater IL‐17 production in tumor‐bearing C3H/HeN mice than in tumor‐bearing C3H/HeJ mice. In C3H/HeN mice, treatment with Spirulina CPS suppressed growth of re‐transplanted glioma; however, treatment with E. coli LPS did not, suggesting that Spirulina CPS enhance the immune response. Administration of anti‐cluster of differentiation (CD)8, anti‐CD4, anti‐CD8 antibodies, and anti‐asialo GM1 antibodies enhanced tumor growth, suggesting that T cells and natural killer cells or macrophages are involved in suppression of tumor growth by Spirulina CPS. Although anti‐interferon‐γ antibodies had no effect on glioma cell growth, anti‐IL‐17 antibodies administered four days after tumor transplantation suppressed growth similarly to treatment with Spirulina CPS. Less angiogenesis was observed in gliomas from Spirulina CPS‐treated mice than in those from saline‐ or E. coli LPS‐treated mice. These findings suggest that, in C3H/HeN mice, Spirulina CPS antagonize glioma cell growth by down‐regulating angiogenesis, and that this down‐regulation is mediated in part by regulating IL‐17 production.  相似文献   

6.
Silk fibroin (SF) nanofiber scaffold containing microalgae Spirulina extract were prepared by electrospinning and the performance and functionality of the scaffold were evaluated. The viscosity and conductivity of the dope solution of Spirulina containing SF were examined for electrospinability and we found that the morphological structure of SF nanofiber is affected by the concentration of Spirulina extract added. The platelet adhesion and coagulation time test confirmed that the Spirulina containing SF nanofiber scaffold had excellent ability to prevent blood clotting or antithrombogenicity that is comparable to heparin. Low cytotoxicity and excellent cell adhesion and proliferation were also observed for Sprulina containing SF nanofiber scaffold by methylthiazolyldiphenyl‐tetrazolium bromide assay and confocal fluorescence microscope using fibroblast and human umbilical vein endothelial cells. Based on these results, we believe SF nanofiber scaffold containing Spirulina extract has the potential to be used as tissue engineering scaffold that requires high hemocompatibility. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 307–318, 2014.  相似文献   

7.
Spirulina is a photosynthetic, filamentous, spiral-shaped, multicellular, blue-green microalga. The two most important species are Spirulina maxima and Spirulina platensis. Spirulina is considered an excellent food, lacking toxicity and having corrective properties against viral attacks, anemia, tumor growth and malnutrition. We have observed that cultures of Spirulina platensis grow in media containing up to 80 ppm of the organophosphorous pesticide, Chlorpyrifos. It was found to be due to an alkaline phosphatase (ALP) activity that was detected in cell free extracts of Spirulina platensis. This activity was purified from the cell free extracts using ammonium sulphate precipitation and gel filtration and shown to belong to the class of EC 3.1.3.1 ALP. The purified enzyme degrades 100 ppm Chlorpyrifos to 20 ppm in 1 h transforming it into its primary metabolite 3, 5, 6-trichloro-2-pyridinol. This is the first report of degradation of Chlorpyrifos by Spirulina platensis whose enzymic mechanism has been clearly identified. These findings have immense potential for harnessing Spirulina platensis in bioremediation of polluted ecosystems.  相似文献   

8.
Reproductive success is a critical fitness attribute that is directly influenced by resource availability. Here, we investigate the effects of diet‐based resource availability on three interrelated aspects of reproductive success: a change in mating system based on mate availability, consequent inbreeding depression, and the deterioration of reproductive efficiency with age (senescence). We employed a factorial experimental design using 22 full‐sib families of the hermaphroditic freshwater snail Physa acuta to explore these interactions. Individual snails were reared in one of two mate‐availability treatments (isolated [selfing] or occasionally paired [outcrossing]) and one of two diet treatments (boiled lettuce or Spirulina, an algae that is rich in protein, vitamins, and minerals). Spirulina‐fed snails initiated reproduction at a 13% earlier age and 7% larger size than lettuce‐fed snails. Spirulina also resulted in a 30% reduction in the time delay before selfing. Compared to lettuce, a diet of Spirulina increased inbreeding depression by 52% for egg hatching rate and 64% for posthatching juvenile survival. Furthermore, Spirulina led to a 15‐fold increase in the rate of reproductive senescence compared with a diet of lettuce. These transgenerational, interactive effects of diet on inbreeding depression and reproductive senescence are discussed in the context of diet‐induced phenotypic plasticity.  相似文献   

9.
CO2 at different concentrations were added to cultures of the eukaryotic microalgae, Chlorella kessleri, C. vulgaris and Scenedesmus obliquus, and the prokaryotic cyanobacterium, Spirulina sp., growing in flasks and in a photobioreactor. In each case, the best kinetics and carbon fixation rate were with a vertical tubular photobioreactor. Overall, Spirulina sp. had the highest rates. Spirulina sp., Sc. obliquus and C. vulgaris could grow with up to 18% CO2.  相似文献   

10.
This study evaluates whether Spirulina, including its components such as phycocyanin, enhances or sustains immune functions by promoting immune competent-cell proliferation or differentiation. The effects of Spirulina of a hot-water extract (SpHW), phycocyanin (Phyc), and cell-wall component extract (SpCW) on proliferation of bone marrow cells and induction of colony-forming activity in mice were investigated. The Spirulina extracts, SpHW, Phyc, and SpCW, enhanced proliferation of bone-marrow cells and induced colony-forming activity in the spleen-cell culture supernatant. Granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-3 (IL-3) were detected in the culture supernatant of the spleen cells stimulated with the Spirulina extracts. Bone marrow-cell colony formation in soft-agar assay was also significantly induced by the blood samples and the culture supernatants of the spleen and Peyer's patch cells of the mice which ingested Spirulina extracts orally for 5 weeks in in vivo study. Ratios of neutrophils and lymphocytes in the peripheral blood and bone marrow, consequently, increased in the mice. Spirulina may have potential therapeutic benefits for improvement of weakened immune functions caused by, for example, the use of anticancer drugs.  相似文献   

11.
Molecular polymorphisms in a selected set of Spirulina and related genera using random primers based on repetitive sequences along with biochemical parameters, led to the unambiguous differentiation of the strains and understanding of their phylogenetic relationships. A combination of 10 sets of dual primers generated 100% distinct polymorphic bands ranging from 150 to 5,000 bp. Total number of fragments ranged from 68 to 159 whereas polymorphic bands ranged from 13 to 32 for different Random Amplified Polymorphic DNA (RAPD) reactions. Spirulina platensis strains, Sp-2 and Sp-3, possessed quite comparable chlorophyll and protein content besides having maximum similarity coefficient (0.88) between them on the basis of RAPD reactions, thus proved to be closely related. Sp-8 (Spirulina from Loktak Lake) having the highest protein content and protein: chlorophyll ratio, showed close similarity with the mutant of Spirulina platensis (Sp-7) on the basis of RAPD analysis. Duncan’s Multiple Range Test (DMRT) ranking for the biochemical parameters were quite closer for the strains of Spirulina and Arthrospira. This is also supported by the cluster analysis based on RAPD data, as the strains of Spirulina and Arthrospira are placed together in the same subcluster in the dendrogram. The comparative closeness among the strains of Lyngbya, Oscillatoria and Phormidium is reflected by the low content of protein and protein: chlorophyll ratio, which is also supported by the dendrogram based upon RAPD; thus, exhibiting the usefulness of multiplex RAPD along with biochemical parameters for the phylogenetic analysis of Spirulina and related genera.  相似文献   

12.
病原菌形成的生物被膜严重威胁人类健康,显著增强了病原菌的耐药性,针对生物被膜的特效药物亟待研究。从虾、蟹壳等中提取得到的壳寡糖是一种天然碱性寡糖,具有良好的杀菌效果,但其对生物被膜的抑制作用仍有待提高。螺旋藻(Spirulina,SP)是一种表面带负电荷的微藻,其与壳寡糖形成的复合物可能发挥协同增效杀灭生物被膜深处病原菌的作用。针对提升壳寡糖的抑生物被膜作用,本研究首先通过浊度法筛选得到了杀菌效果显著的壳寡糖,并通过静电吸附作用将壳寡糖与螺旋藻结合,完成螺旋藻@壳寡糖(Spriulina@Chitooligosaccharides,SP@COS)复合物的制备。通过测定zeta电位、粒径和荧光标记等方法表征了壳寡糖和螺旋藻的结合情况,紫外-可见吸收光谱(ultraviolet-visible absorbance spectroscopy,UV-Vis)结果显示出螺旋藻对壳寡糖的包封率达90%,负载率达16%。制备的SP@COS对细菌、真菌生物被膜都有明显的增效抑制作用,且这种抑制效果主要是通过深入生物被膜内部、破坏细胞结构所实现。这些结果显示了螺旋藻-壳寡糖复合物具备作为生物被膜抑制剂的潜力,为提高壳寡糖的抑生物被膜作用、解决病原菌的危害提供了理论基础与新的思路。  相似文献   

13.
Spirulina-acyl-lipid desaturases are integral membrane proteins found in thylakoid and plasma membranes. These enzymes catalyze the fatty acid desaturation process of Spirulina to yield γ-linolenic acid (GLA) as the final desaturation product. It has been reported that the cyanobacterial desaturases use ferredoxin as an electron donor, whereas the acyl-lipid desaturase in plant cytoplasm and the acyl-CoA desaturase of animals and fungi use cytochrome b 5. The low level of ferredoxin present in Escherichia coli cells leads to an inability to synthesize GLA when the cells are transformed with the Spirulina-∆6 desaturase, desD, and grown in the presence of the reaction substrate, linoleic acid. In this study, Spirulina-∆6 desaturase, encoded by the desD gene, was N-terminally fused and co-expressed with the cytochrome b 5 domain from Mucor rouxii. The product, GLA, made heterologously in E. coli and Saccharomyces cerevisiae, was then detected and analyzed. The results revealed the production of GLA by Spirulina-∆6 desaturase fused or co-expressed with cytochrome b 5 in E. coli cells, in which GLA production by this gene cannot occur in the absence of cytochrome b 5. Moreover, the GLA production ability in the E. coli host cells was lost after the single substitution mutation was introduced to H52 in the HPGG motif of the cytochrome b 5 domain. These results revealed the complementation of the ferredoxin requirement by the fusion or co-expression of the fungal-cytochrome b 5 domain in the desaturation process of Spirulina-∆6 desaturase. Furthermore, the free form of cytochrome b 5 domain can also enhance GLA production by the Spirulina-desD gene in yeast cells.  相似文献   

14.
Summary Mass cultivation of Spirulina for commercial application suffers from poor productivity when measured against laboratory results or theoretical projections. Wider applications of algal products require that this gap be reduced. Addition of eucalyptus kraft black liquor at a maximum of 0.1% to Spirulina cultures enhanced biomass productivity by at least 40%. The factors enhancing Spirulina biomass productivity were insoluble at low pH, of low molecular mass and stable to high temperature. Single addition of kraft black liquor in outdoor continuous cultures afforded sustained enhancement in biomass productivity for at least eight weeks.  相似文献   

15.
Exposing the prawn Penaeus merguiensis to the bacteria Vibrio harveyi and Escherichia coli for an hour or feeding the prawns with Spirulina (Arthrospira) platensis (0.3% w/w feed) enhanced the phagocytic activity of their hemocytes. Improvement of the phagocytic activity was primarily through the activation of the hemocytes. The activated phagocytic hemocytes had a higher capacity to engulf foreign agents, such as bacteria, and a higher rate of phagocytosis. The phagocytic enhancement effect peaked on the fourth day of feeding with Spirulina. In the in vitro study, the granular cells from prawns took 45–60 min to complete the process of degranulation. Pre-exposure to Salmonella typhimurium and Bacillus subtilis did not result in enhancement of phagocytic activity of hemocytes. Only 10% prawns fed with Spirulina died in the first 14 days when challenged by V. harveyi at a concentration of 1 × 104CFUs mL–1, while all control prawns (basal feed without Spirulina) died within 14 days.  相似文献   

16.
Spirulina-acyl-lipid desaturases are membrane-bound enzymes found in thylakoid and plasma membranes. These enzymes carry out the fatty acid desaturation process of Spirulina to yield γ-linolenic acid (GLA) as the final desaturation product. In this study, Spirulina6 desaturase encoded by the desD gene was heterologously expressed and characterized in Saccharomyces cerevisiae. We then conducted site-directed mutagenesis of the histidine residues in the three histidine boxes to determine the role of these amino acid residues in the enzyme function. Our results showed that while four mutants showed complete loss of Δ6-desaturase activity and two mutants showed only trace of the activity, the enzyme activity could be partially restored by chemical rescue using exogenously provided imidazole. This study reveals that the histidine residues (which have imidazole as their functional group) in the conserved clusters play a critical role in Δ6-desaturase activity, possibly by providing a di-iron catalytic center. In our previous study, this enzyme was expressed in Escherichia coli. The results reveal that the enzyme can function only in the presence of an exogenous cofactor, ferredoxin, provided in vitro. This evidence suggests that baker’s yeast has a cofactor that can complement ferredoxin, thought to act as an electron donor for the Δ6 desaturation in cyanobacteria, including Spirulina. The electron donor of the Spirulina6 desaturation in yeast is more likely to be cytochrome b5, which is absent in E. coli. This means that the enzyme expressed in S. cerevisiae can catalyze the biosynthesis of the product, GLA, in vivo.  相似文献   

17.
The qualitative and quantitative carotenoid composition is reported for (i) a red and a green strain of Oscillatoria limnetica and a green strain of Spirulina platensis cultivated under identical conditions and (ii) a red and a green strain of Spirulina subsalsa grown under identical conditions. No correlation between colour and carotenoid content was obtained. However, differences in carotenoid composition within the Oscillatoria and Spirulina strains were observed. Both oscillol diglycoside ex Oscillatoria limnetica and myxol glycoside ex Spirulina platensis were mixed α-glycosides with chinovose-fucose present in ca 7:2 ratio. Analytical procedures are given. The chemosystematic implications for the current taxonomy of the genera Oscillatoria and Spirulina are discussed.  相似文献   

18.
The results of our previous study on heterologous expression in Escherichia coli of the gene desD, which encodes Spirulina Δ6 desaturase, showed that co-expression with an immediate electron donor—either cytochrome b 5 or ferredoxin—was required for the production of GLA (γ-linolenic acid), the product of the reaction catalyzed by Δ6 desaturase. Since a system for stable transformation of Spirulina is not available, studies concerning Spirulina-enzyme characterization have been carried out in heterologous hosts. In this present study, the focus is on the role of the enzyme’s N- and C-termini, which are possibly located in the cytoplasmic phase. Truncated enzymes were expressed in E. coli by employing the pTrcHisA expression system. The truncation of the N- and C-terminus by 10 (N10 and C10) and 30 (N30 and C30) amino acids, respectively, altered the enzyme’s regioselective mode from one that measures from a preexisting double bond to that measuring from the methyl end of the substrate.  相似文献   

19.
Three distinct heterotrophic eubacterial strains were isolated from mixotrophic cultures of the filamentous cyanobacterium, Spirulina maxima (Gom) Geitl. Spirulina spp. are considered to be prime candidates for the phototrophic production of biomass protein, particularly in developing countries. These cyanobacteria are extreme alkaliphiles and halophiles, making their production in arid regions promising. Most previous studies on the eubacteria which live in Spirulina culture systems have focused on determining the possible presence of pathogenic species in biomass protein. Little has been done to understand the symbiotic relationships between the cyanobacterium and its eubacterial cosymbionts. From the perspective of a heterotrophic eubacterium, autotrophic cultural systems of Spirulina have limited carbon and energy resources, being limited to cyanobacterial exudates. In this study, three eubacterial strains were isolated and studied. One strain, a Gram-negative, non-sporing, motile rod, grew exceptionally well in a mineral salts medium where only a small amount of a single low molecular weight organic compound (e.g., acetate) was supplied as sole energy source. This strain was also extremely euryresponsive with respect to salinity and alkalinity as well. Two less well-adapted eubacterial strains are also described.  相似文献   

20.
The present study was aimed to develop a membrane sparger (MS) integrated into a tubular photobioreactor to promote the increase of the carbon dioxide (CO2) fixation by Spirulina sp. LEB 18 cultures. The use of MS for the CO2 supply in Spirulina cultures resulted not only in the increase of DIC concentrations but also in the highest accumulated DIC concentration in the liquid medium (127.4 mg L−1 d−1). The highest values of biomass concentration (1.98 g L−1), biomass productivity (131.8 mg L−1 d−1), carbon in biomass (47.9% w w−1), CO2 fixation rate (231.6 mg L−1 d−1), and CO2 use efficiency (80.5% w w−1) by Spirulina were verified with MS, compared to the culture with conventional sparger for CO2 supply. Spirulina biomass in both culture conditions had high protein contents varying from 64.9 to 69% (w w−1). MS can be considered an innovative system for the supply of carbon for the microalgae cultivation and biomass production. Moreover, the use of membrane system might contribute to increased process efficiency with a reduced cost of biomass production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号