首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biosynthesis of a functional mitochondrion requires the coordinate expression of genes in both mitochondrial and nuclear DNAs. In yeast, three mitochondrial genes are split and RNA splicing plays a pivotal role in their expression. The recent finding that some introns are capable of self-splicing activity in vitro has permitted analysis of the mechanisms involved in RNA catalysis and may eventually shed light on the evolution of splicing mechanisms in general. Most mitochondrial proteins are encoded by nuclear genes, synthesized in the cytoplasm and imported by the organelle. The availability of cloned genes coding for several constituent subunits of the ubiquinol-cytochrome c reductase, which are imported by mitochondria, has allowed study of selected steps in the addressing of proteins to mitochondria and their intercompartmental sorting within the organelle. Recent developments are discussed.  相似文献   

2.
Mitochondria, through oxidative phosphorylation, are the primary source of energy production in all tissues under aerobic conditions. Although critical to life, energy production is not the only function of mitochondria, and the composition of this organelle is tailored to meet the specific needs of each cell type. As an organelle, the mitochondrion has been a popular subject for proteomic analysis, but quantitative proteomic methods have yet to be applied to tease apart subtle differences among mitochondria from different tissues or muscle types. Here we used mass spectrometry-based proteomics to analyze mitochondrial proteins extracted from rat skeletal muscle, heart, and liver tissues. Based on 689 proteins identified with high confidence, mitochondria from the different tissues are qualitatively quite similar. However, striking differences emerged from the quantitative comparison of protein abundance between the tissues. Furthermore we applied similar methods to analyze mitochondrial matrix and intermembrane space proteins extracted from the same mitochondrial source, providing evidence for the submitochondrial localization of a number of proteins in skeletal muscle and liver. Several proteins not previously thought to reside in mitochondria were identified, and their presence in this organelle was confirmed by protein correlation profiling. Hierarchical clustering of microarray expression data provided further evidence that some of the novel mitochondrial candidates identified in the proteomic survey might be associated with mitochondria. These data reveal several important distinctions between mitochondrial and submitochondrial proteomes from skeletal muscle, heart, and liver tissue sources. Indeed approximately one-third of the proteins identified in the soluble fractions are associated predominantly to one of the three tissues, indicating a tissue-dependent regulation of mitochondrial proteins. Furthermore a small percentage of the mitochondrial proteome is unique to each tissue.  相似文献   

3.
4.
《BBA》2022,1863(5):148554
Mitochondria is a unique cellular organelle involved in multiple cellular processes and is critical for maintaining cellular homeostasis. This semi-autonomous organelle contains its circular genome – mtDNA (mitochondrial DNA), that undergoes continuous cycles of replication and repair to maintain the mitochondrial genome integrity. The majority of the mitochondrial genes, including mitochondrial replisome and repair genes, are nuclear-encoded. Although the repair machinery of mitochondria is quite efficient, the mitochondrial genome is highly susceptible to oxidative damage and other types of exogenous and endogenous agent-induced DNA damage, due to the absence of protective histones and their proximity to the main ROS production sites. Mutations in replication and repair genes of mitochondria can result in mtDNA depletion and deletions subsequently leading to mitochondrial genome instability. The combined action of mutations and deletions can result in compromised mitochondrial genome maintenance and lead to various mitochondrial disorders. Here, we review the mechanism of mitochondrial DNA replication and repair process, key proteins involved, and their altered function in mitochondrial disorders. The focus of this review will be on the key genes of mitochondrial DNA replication and repair machinery and the clinical phenotypes associated with mutations in these genes.  相似文献   

5.
6.
Integrative analysis of the mitochondrial proteome in yeast   总被引:9,自引:0,他引:9       下载免费PDF全文
In this study yeast mitochondria were used as a model system to apply, evaluate, and integrate different genomic approaches to define the proteins of an organelle. Liquid chromatography mass spectrometry applied to purified mitochondria identified 546 proteins. By expression analysis and comparison to other proteome studies, we demonstrate that the proteomic approach identifies primarily highly abundant proteins. By expanding our evaluation to other types of genomic approaches, including systematic deletion phenotype screening, expression profiling, subcellular localization studies, protein interaction analyses, and computational predictions, we show that an integration of approaches moves beyond the limitations of any single approach. We report the success of each approach by benchmarking it against a reference set of known mitochondrial proteins, and predict approximately 700 proteins associated with the mitochondrial organelle from the integration of 22 datasets. We show that a combination of complementary approaches like deletion phenotype screening and mass spectrometry can identify over 75% of the known mitochondrial proteome. These findings have implications for choosing optimal genome-wide approaches for the study of other cellular systems, including organelles and pathways in various species. Furthermore, our systematic identification of genes involved in mitochondrial function and biogenesis in yeast expands the candidate genes available for mapping Mendelian and complex mitochondrial disorders in humans.  相似文献   

7.
8.
9.
Functional analysis of two maize cDNAs encoding T7-like RNA polymerases.   总被引:18,自引:0,他引:18  
  相似文献   

10.
11.
Organelle origins and ribosomal RNA   总被引:8,自引:0,他引:8  
As the detailed molecular biology of organelle genomes has unfolded, there has been a general acceptance of the view that plastids and mitochondria are of endosymbiotic, eubacterial origin. Plastid genes are strikingly similar to their eubacterial (particularly cyanobacterial) counterparts in sequence, organization, and mode of expression, and such features strongly support the hypothesis that the plastid and its genome were derived in evolution from a blue-green alga-like endosymbiont. Mitochondria, on the other hand, are problematic: mitochondrial genes are organized and expressed in remarkably diverse ways in the different major groups of eukaryotes, and in no case are these features particularly characteristic of either bacterial or nuclear genomes. There is, however, clear evidence derived from gene sequence supporting the eubacterial ancestry of mitochondria, and some of the most compelling data have come from analyses of mitochondrial ribosomal RNA (rRNA). Plant mitochondrial rRNA genes diverge in sequence at a particularly slow rate, and these genes have proven to be especially supportive of the endosymbiont hypothesis, pointing to an origin of mitochondria from within the alpha subdivision of the purple bacteria. Ribosomal RNA sequences provide a basis for the construction of global phylogenetic trees that probe the evolutionary history of organelles, and that address the question of whether mitochondria and plastids are monophyletic or polyphyletic in origin. Such studies raise the possibility that the rRNA genes of plant mitochondria originated separately from the mitochondrial rRNA genes of other eukaryotes.  相似文献   

12.
13.
14.
15.
16.
Mitochondria are dynamic organelles that frequently divide and fuse together, resulting in the formation of intracellular tubular networks. In yeast and mammals, several factors including Drp1/Dnm1 and Mfn/Fzo1 are known to regulate mitochondrial morphology by controlling membrane fission or fusion. Here, we report the systematic screening of Caenorhabditis elegans mitochondrial proteins required to maintain the morphology of the organelle using an RNA interference feeding library. In C. elegans body wall muscle cells, mitochondria usually formed tubular structures and were severely fragmented by the mutation in fzo-1 gene, indicating that the body wall muscle cells are suitable for monitoring changes in mitochondrial morphology due to gene silencing. Of 719 genes predicted to code for most of mitochondrial proteins, knockdown of >80% of them caused abnormal mitochondrial morphology, including fragmentation and elongation. These findings indicate that most fundamental mitochondrial functions, including metabolism and oxidative phosphorylation, are necessary for maintenance of the tubular networks as well as membrane fission and fusion. This is the first evidence that known mitochondrial activities are prerequisite for regulating the morphology of the organelle. Furthermore, 88 uncharacterized or poorly characterized genes were found in the screening to be implicated in mitochondrial morphology.  相似文献   

17.
18.
Microsporidia are obligate intracellular parasites, phylogenetically allied to the fungi. Once considered amitochondriate, now a number of mitochondrion-derived genes have been described from various species, and the relict organelle was recently identified in Trachipleistophora hominis. We have investigated the expression of potential mitochondrial targeted proteins in the spore stage to determine whether the organelle is likely to have a role in the spore or early infection stage. To investigate whether the Antonospora locustae genome codes for a different complement of mitochondrial proteins than Encephalitozoon cuniculi an EST library was searched for putative mitochondrial genes that have not been identified in the E. cuniculi genome project. The spore is the infectious stage of microsporidia, but is generally considered to be metabolically dormant. Fourteen genes for putatively mitochondrion-targeted proteins were shown to be present in purified spore mRNA by 3'-rapid amplification of cDNA ends and EST sequencing. Pyruvate dehydrogenase E1alpha and mitochondrial glycerol-3-phosphate dehydrogenase proteins were also shown to be present in A. locustae and E. cuniculi spores, respectively, suggesting a role for these proteins in the early stages of infection, or within the spore itself. EST sequencing also revealed two mitochondrial protein-encoding genes in A. locustae that are not found in the genome of E. cuniculi. One encodes a possible pyruvate transporter, the other a subunit of the mitochondrial inner membrane peptidase. In yeast mitochondria, this protein is part of a trimeric complex that processes proteins targeted to the inner membrane and the intermembrane space, and its substrate in A. locustae is presently unknown.  相似文献   

19.
Mitochondria: more than just a powerhouse   总被引:26,自引:0,他引:26  
Pioneering biochemical studies have long forged the concept that the mitochondria are the 'energy powerhouse of the cell'. These studies, combined with the unique evolutionary origin of the mitochondria, led the way to decades of research focusing on the organelle as an essential, yet independent, functional component of the cell. Recently, however, our conceptual view of this isolated organelle has been profoundly altered with the discovery that mitochondria function within an integrated reticulum that is continually remodeled by both fusion and fission events. The identification of a number of proteins that regulate these activities is beginning to provide mechanistic details of mitochondrial membrane remodeling. However, the broader question remains regarding the underlying purpose of mitochondrial dynamics and the translation of these morphological transitions into altered functional output. One hypothesis has been that mitochondrial respiration and metabolism may be spatially and temporally regulated by the architecture and positioning of the organelle. Recent evidence supports and expands this idea by demonstrating that mitochondria are an integral part of multiple cell signaling cascades. Interestingly, proteins such as GTPases, kinases and phosphatases are involved in bi-directional communication between the mitochondrial reticulum and the rest of the cell. These proteins link mitochondrial function and dynamics to the regulation of metabolism, cell-cycle control, development, antiviral responses and cell death. In this review we will highlight the emerging evidence that provides molecular definition to mitochondria as a central platform in the execution of diverse cellular events.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号