首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
GSK-3, Dd-STATa, PKA, rZIP and Ras all play important roles in cell type determination of Dictyostelium discoideum. The fact that homologs of these proteins also function in metazoan development emphasizes the importance of Dictyostelium as a model microbial organism for studying the molecular mechanisms that regulate development. The recent elaboration of the central role for GSK-3 in cell type determination has been of particular importance. The stimulatory effect of extracellular cAMP on GSK-3 activity has been shown to act through the cell surface receptor cAR3 and a tyrosine protein kinase ZAK1, which directly activates and phosphorylates GSK-3. Several proteins, including Dd-STATa, have been identified as substrates for GSK-3, and are therefore potential transducers of the signals involved in cell type determination.  相似文献   

6.
7.
8.
9.
10.
11.
The recent release of the Dictyostelium genome sequence is important because Dictyostelium has become a much-favoured model system for cell and developmental biologists. The sequence has revealed a remarkably high total number of approximately 12 500 genes, only a thousand fewer than are encoded by Drosophila. Previous protein-sequence comparisons suggested that Dictyostelium is evolutionarily closer to animals and fungi than to plants, and the global protein sequence comparison, now made possible by the genome sequence, confirms this. This review focuses on several classes of proteins that are shared by Dictyostelium and animals: a highly sophisticated array of microfilament components, a large family of G-protein-coupled receptors and a diverse set of SH2 domain-containing proteins. The presence of these proteins strengthens the case for a relatively close relationship with animals and extends the range of problems that can be addressed using Dictyostelium as a model organism.  相似文献   

12.
13.
14.
Zinc is a micronutrient important in several biological processes including growth and development. We have limited knowledge on the impact of maternal zinc deficiency on zinc and zinc regulatory mechanisms in the developing embryo due to a lack of in vivo experimental models that allow us to directly study the effects of maternal zinc on embryonic development following implantation. To overcome this barrier, we have proposed to use zebrafish as a model organism to study the impact of zinc during development. The goal of the current study was to profile the mRNA expression of all the known zinc transporter genes in the zebrafish across embryonic and larval development and to quantify the embryonic zinc concentrations at these corresponding developmental time points. The SLC30A zinc transporter family (ZnT) and SLC39A family, Zir-,Irt-like protein (ZIP) zinc transporter proteins were profiled in zebrafish embryos at 0, 2, 6, 12, 24, 48 and 120 h post fertilization to capture expression patterns from a single cell through full development. We observed consistent embryonic zinc levels, but differential expression of several zinc transporters across development. These results suggest that zebrafish is an effective model organism to study the effects of zinc deficiency and further investigation is underway to identify possible molecular pathways that are dysregulated with maternal zinc deficiency.  相似文献   

15.
16.
Rho GTPases are ubiquitously expressed across the eukaryotes where they act as molecular switches participating in the regulation of many cellular processes. We present an inventory of proteins involved in Rho-regulated signaling pathways in Dictyostelium discoideum that have been identified in the completed genome sequence. In Dictyostelium the Rho family is encoded by 18 genes and one pseudogene. Some of the Rho GTPases (Rac1a/b/c, RacF1/F2 and RacB) are members of the Rac subfamily, and one, RacA, belongs to the RhoBTB subfamily. The Cdc42 and Rho subfamilies, characteristic of metazoa and fungi, are absent. The activities of these GTPases are regulated by two members of the RhoGDI family, by eight members of the Dock180/zizimin family and by a surprisingly large number of proteins carrying RhoGEF (42 genes) or RhoGAP (43 genes) domains or both (three genes). Most of these show domain compositions not found in other organisms, although some have clear homologs in metazoa and/or fungi. Among the (in many cases putative) effectors found in Dictyostelium are the CRIB domain proteins (WASP and two related proteins, eight PAK kinases and a novel gelsolin-related protein), components of the Scar/WAVE complex, 10 formins, four IQGAPs, two members of the PCH family, numerous lipid kinases and phospholipases, and components of the NADPH oxidase and the exocyst complexes. In general, the repertoire of Rho signaling components of Dictyostelium is similar to that of metazoa and fungi.  相似文献   

17.
The proteins from the ZIP and the CDF families of zinc transporters contain a histidine-rich sequence in a loop domain located between transmembrane domains III and IV for the ZIP family and transmembrane domains IV and V for the CDF family. Topological predictions suggest that these loops are located in the cytoplasm. The loops contain a histidine-rich sequence with a variable number of histidine residues depending on the transporter. The histidine-rich sequence was postulated to serve as an extra-membrane metal binding site in these proteins. hZip1 is a human zinc transporter ubiquitously expressed. The histidine-rich motif located in the large loop of this transporter is composed of the following sequence, H(158)WHD(161). To determine if this motif is involved in the zinc transport activity of the protein, we performed site directed-mutagenesis to replace the loop histidines with alanines. Results suggest that both histidines are necessary for the zinc transport function and are not involved in the plasma membrane localization of the transporter as has been reported for the Zrt1 transporter in yeast. In addition, two histidine residues in transmembrane domains IV and V are also important in the zinc transport function. The results support an intermolecular exchange mechanism of zinc transport.  相似文献   

18.
19.
Zeroing in on zinc uptake in yeast and plants.   总被引:13,自引:0,他引:13  
Zinc is an essential micronutrient. Genes responsible for zinc uptake have now been identified from yeast and plants. These genes belong to an extended family of cation transporters called the ZIP gene family. Zinc efflux genes that belong to another transporter family, the CDF family, have also been identified in yeast and Arabidopsis. It is clear that studies in yeast can greatly aid our understanding of zinc metabolism in plants.  相似文献   

20.
The proteins from the ZIP and the CDF families of zinc transporters contain a histidine-rich sequence in a loop domain located between transmembrane domains III and IV for the ZIP family and transmembrane domains IV and V for the CDF family. Topological predictions suggest that these loops are located in the cytoplasm. The loops contain a histidine-rich sequence with a variable number of histidine residues depending on the transporter. The histidine-rich sequence was postulated to serve as an extra-membrane metal binding site in these proteins. hZip1 is a human zinc transporter ubiquitously expressed. The histidine-rich motif located in the large loop of this transporter is composed of the following sequence, H158WHD161. To determine if this motif is involved in the zinc transport activity of the protein, we performed site directed-mutagenesis to replace the loop histidines with alanines. Results suggest that both histidines are necessary for the zinc transport function and are not involved in the plasma membrane localization of the transporter as has been reported for the Zrt1 transporter in yeast. In addition, two histidine residues in transmembrane domains IV and V are also important in the zinc transport function. The results support an intermolecular exchange mechanism of zinc transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号