首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Food webs aim to provide a thorough representation of the trophic interactions found in an ecosystem. The complexity of empirical food webs, however, is leading many ecologists to focus dynamic ecosystem studies on smaller microcosm or mesocosm studies based upon community modules, which comprise three to five species and the interactions likely to have ecological relevance. We provide here a structural counterpart to community modules. We investigate food-web 'motifs' which are n-species connected subgraphs found within the food web. Remarkably, we find that the over- and under-representation of three-species motifs in empirical food webs can be understood through comparison to a static food-web model, the niche model. Our result conclusively demonstrates that predation upon species with some 'characteristic' niche value is the prey selection mechanism consistent with the structural properties of empirical food webs.  相似文献   

2.
Food webs represent trophic (feeding) interactions in ecosystems. Since the late 1970s, it has been recognized that food-webs have a surprisingly close relationship to interval graphs. One interpretation of food-web intervality is that trophic niche space is low-dimensional, meaning that the trophic character of a species can be expressed by a single or at most a few quantitative traits. In a companion paper we demonstrated, by simulating a minimal food-web model, that food webs are also expected to be interval when niche-space is high-dimensional. Here we characterize the fundamental mechanisms underlying this phenomenon by proving a set of rigorous conditions for food-web intervality in high-dimensional niche spaces. Our results apply to a large class of food-web models, including the special case previously studied numerically.  相似文献   

3.
Coll M  Schmidt A  Romanuk T  Lotze HK 《PloS one》2011,6(7):e22591
Seagrass beds provide important habitat for a wide range of marine species but are threatened by multiple human impacts in coastal waters. Although seagrass communities have been well-studied in the field, a quantification of their food-web structure and functioning, and how these change across space and human impacts has been lacking. Motivated by extensive field surveys and literature information, we analyzed the structural features of food webs associated with Zostera marina across 16 study sites in 3 provinces in Atlantic Canada. Our goals were to (i) quantify differences in food-web structure across local and regional scales and human impacts, (ii) assess the robustness of seagrass webs to simulated species loss, and (iii) compare food-web structure in temperate Atlantic seagrass beds with those of other aquatic ecosystems. We constructed individual food webs for each study site and cumulative webs for each province and the entire region based on presence/absence of species, and calculated 16 structural properties for each web. Our results indicate that food-web structure was similar among low impact sites across regions. With increasing human impacts associated with eutrophication, however, food-web structure show evidence of degradation as indicated by fewer trophic groups, lower maximum trophic level of the highest top predator, fewer trophic links connecting top to basal species, higher fractions of herbivores and intermediate consumers, and higher number of prey per species. These structural changes translate into functional changes with impacted sites being less robust to simulated species loss. Temperate Atlantic seagrass webs are similar to a tropical seagrass web, yet differed from other aquatic webs, suggesting consistent food-web characteristics across seagrass ecosystems in different regions. Our study illustrates that food-web structure and functioning of seagrass habitats change with human impacts and that the spatial scale of food-web analysis is critical for determining results.  相似文献   

4.
Using a bioenergetic model we show that the pattern of foraging preferences greatly determines the complexity of the resulting food webs. By complexity we refer to the degree of richness of food-web architecture, measured in terms of some topological indicators (number of persistent species and links, connectance, link density, number of trophic levels, and frequency of weak links). The poorest food-web architecture is found for a mean-field scenario where all foraging preferences are assumed to be the same. Richer food webs appear when foraging preferences depend on the trophic position of species. Food-web complexity increases with the number of basal species. We also find a strong correlation between the complexity of a trophic module and the complexity of entire food webs with the same pattern of foraging preferences.  相似文献   

5.
The adaptive food-web hypothesis suggests that an adaptive foraging switch inverses the classically negative complexity-stability relationships of food webs into positive ones, providing a possible resolution for the long-standing paradox of how populations persist in a complex natural food web. However, its applicability to natural ecosystems has been questioned, because the positive relationship does not emerge when a niche model, a realistic "benchmark" of food-web models, is used. I hypothesize that, in the niche model, increasing connectance influences the fraction of basal species to destabilize the system and this masks the inversion of the negative complexity-stability relationship in the presence of adaptive foraging. A model analysis shows that, if this confounding effect is eliminated, then, even in a niche model, a population is more likely to persist in a more complex food web. This result supports the robustness of adaptive food-web hypothesis and reveals the condition in which the hypothesis should be tested.  相似文献   

6.
A rich body of empirically grounded theory has developed about food webs—the networks of feeding relationships among species within habitats. However, detailed food-web data and analyses are lacking for ancient ecosystems, largely because of the low resolution of taxa coupled with uncertain and incomplete information about feeding interactions. These impediments appear insurmountable for most fossil assemblages; however, a few assemblages with excellent soft-body preservation across trophic levels are candidates for food-web data compilation and topological analysis. Here we present plausible, detailed food webs for the Chengjiang and Burgess Shale assemblages from the Cambrian Period. Analyses of degree distributions and other structural network properties, including sensitivity analyses of the effects of uncertainty associated with Cambrian diet designations, suggest that these early Paleozoic communities share remarkably similar topology with modern food webs. Observed regularities reflect a systematic dependence of structure on the numbers of taxa and links in a web. Most aspects of Cambrian food-web structure are well-characterized by a simple “niche model,” which was developed for modern food webs and takes into account this scale dependence. However, a few aspects of topology differ between the ancient and recent webs: longer path lengths between species and more species in feeding loops in the earlier Chengjiang web, and higher variability in the number of links per species for both Cambrian webs. Our results are relatively insensitive to the exclusion of low-certainty or random links. The many similarities between Cambrian and recent food webs point toward surprisingly strong and enduring constraints on the organization of complex feeding interactions among metazoan species. The few differences could reflect a transition to more strongly integrated and constrained trophic organization within ecosystems following the rapid diversification of species, body plans, and trophic roles during the Cambrian radiation. More research is needed to explore the generality of food-web structure through deep time and across habitats, especially to investigate potential mechanisms that could give rise to similar structure, as well as any differences.  相似文献   

7.
Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators:prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests.  相似文献   

8.
Global environmental changes threaten biodiversity and the interactions between species, and food-web approaches are being used increasingly to measure their community-wide impacts. Here we review how parasitoid–host food webs affect biological control, and how their structure responds to environmental change. We find that land-use intensification tends to produce webs with low complexity and uneven interaction strengths. Dispersal, spatial arrangement of habitats, the species pool and community differences across habitats have all been found to determine how webs respond to landscape structure, though clear effects of landscape complexity on web structure remain elusive. The invasibility of web structures and response of food webs to invasion have been the subject of theoretical and empirical work respectively, and nutrient enrichment has been widely studied in the food-web literature, potentially driving dynamic instability and altering biomass ratios of different trophic levels. Combined with food-web changes observed under climate change, these responses of food webs could signal changes to biological control, though there have been surprisingly few studies linking food-web structure to pest control, and these have produced mixed results. However, there is strong potential for food-web approaches to add value to biological control research, as parasitoid–host webs have been used to predict indirect effects among hosts that share enemies, to study non-target effects of biological control agents and to quantify the use of alternative prey resources by enemies. Future work is needed to link food-web interactions with evolutionary responses to the environment and predator–prey interactions, while incorporating recent advances in predator biodiversity research. This holistic understanding of agroecosystem responses and functioning, made possible by food-web approaches, may hold the key to better management of biological control in changing environments.  相似文献   

9.
Human-mediated disturbances such as fishing, habitat modification, and pollution have resulted in significant shifts in species composition and abundance in marine ecosystems which translate into degradation of food-web structure. Here, we used a comparative ecological modelling approach and data from two food webs (North-Central Adriatic and South Catalan Sea) and two time periods (mid-late 1970s and 1990s) in the Mediterranean Sea to evaluate how changes in species composition and biomass have affected food-web properties and the extent of ecosystem degradation. We assembled species lists and ecological information for both regions and time periods into stochastic structural and mass-balance food-web models, and compared the outcomes of 22 food-web properties. Our results show strong similarities in structural food-web properties between the North-Central Adriatic and South Catalan Seas indicating similar ecosystem structure and levels of ecological degradation between regions and time periods. In contrast, a comparison with other published marine food webs (Caribbean, Benguela, and US continental shelf) suggested that Mediterranean webs are in an advanced state of ecological degradation. This was reflected by lower trophic height, linkage density, connectance, omnivory, species involved in looping, trophic chain length and fraction of biomass at higher trophic levels, as well as higher generality and fraction of biomass at lower trophic levels. An analysis of robustness to simulated species extinction revealed lower robustness to species removals in Mediterranean webs and corroborated their advanced state of degradation. Importantly, the two modelling approaches used delivered comparable results suggesting that they both capture fundamental information about how food webs are structured. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Although the food web is one of the most fundamental and oldest concepts in ecology, elucidating the strategies and structures by which natural communities of species persist remains a challenge to empirical and theoretical ecologists. We show that simple regulatory feedbacks between autotrophs and their environment when embedded within complex and realistic food-web models enhance biodiversity. The food webs are generated through the niche-model algorithm and coupled with predator-prey dynamics, with and without environmental feedbacks at the autotroph level. With high probability and especially at lower, more realistic connectance levels, regulatory environmental feedbacks result in fewer species extinctions, that is, in increased species persistence. These same feedback couplings, however, also sensitize food webs to environmental stresses leading to abrupt collapses in biodiversity with increased forcing. Feedback interactions between species and their material environments anchor food-web persistence, adding another dimension to biodiversity conservation. We suggest that the regulatory features of two natural systems, deep-sea tubeworms with their microbial consortia and a soil ecosystem manifesting adaptive homeostatic changes, can be embedded within niche-model food-web dynamics.  相似文献   

11.
《Ecological Complexity》2008,5(2):121-131
This work analyzes the relationship between large food webs describing potential feeding relations between species and smaller sub-webs thereof describing relations actually realized in local communities of various sizes. Special attention is given to the relationships between patterns of phylogenetic correlations encountered in large webs and sub-webs. Based on the current theory of food-web topology as implemented in the matching model, it is shown that food webs are scale invariant in the following sense: given a large web described by the model, a smaller, randomly sampled sub-web thereof is described by the model as well. A stochastic analysis of model steady states reveals that such a change in scale goes along with a re-normalization of model parameters. Explicit formulae for the re-normalized parameters are derived. Thus, the topology of food webs at all scales follows the same patterns, and these can be revealed by data and models referring to the local scale alone. As a by-product of the theory, a fast algorithm is derived which yields sample food webs from the exact steady state of the matching model for a high-dimensional trophic niche space in finite time.  相似文献   

12.
The mechanism for maintaining complex food webs has been a central issue in ecology because theory often predicts that complexity (higher the species richness, more the interactions) destabilizes food webs. Although it has been proposed that prey anti-predator defence may affect the stability of prey-predator dynamics, such studies assumed a limited and relatively simpler variation in the food-web structure. Here, using mathematical models, I report that food-web flexibility arising from prey anti-predator defence enhances community-level stability (community persistence and robustness) in more complex systems and even changes the complexity-stability relationship. The model analysis shows that adaptive predator-specific defence enhances community-level stability under a wide range of food-web complexity levels and topologies, while generalized defence does not. Furthermore, while increasing food-web complexity has minor or negative effects on community-level stability in the absence of defence adaptation, or in the presence of generalized defence, in the presence of predator-specific defence, the connectance-stability relationship may become unimodal. Increasing species richness, in contrast, always lowers community-level stability. The emergence of a positive connectance-stability relationship however necessitates food-web compartmentalization, high defence efficiency and low defence cost, suggesting that it only occurs under a restricted condition.  相似文献   

13.
Species loss in ecosystems can lead to secondary extinctions as a result of consumer–resource relationships and other species interactions. We compare levels of secondary extinctions in communities generated by four structural food-web models and a fifth null model in response to sequential primary species removals. We focus on various aspects of food-web structural integrity including robustness, community collapse and threshold periods, and how these features relate to assumptions underlying different models, different species loss sequences and simple measures of diversity and complexity. Hierarchical feeding, a fundamental characteristic of food-web structure, appears to impose a cost in terms of robustness and other aspects of structural integrity. However, exponential-type link distributions, also characteristic of more realistic models, generally confer greater structural robustness than the less skewed link distributions of less realistic models. In most cases for the more realistic models, increased robustness and decreased levels of web collapse are associated with increased diversity, measured as species richness S, and increased complexity, measured as connectance C. These and other results, including a surprising sensitivity of more realistic model food webs to loss of species with few links to other species, are compared with prior work based on empirical food-web data.  相似文献   

14.
《Ecological Complexity》2005,2(3):312-321
Food webs are networks describing who is eating whom in an ecological community. By now it is clear that many aspects of food-web structure are reproducible across diverse habitats, yet little is known about the driving force behind this structure. Evolutionary and population dynamical mechanisms have been considered. We propose a model for the evolutionary dynamics of food-web topology and show that it accurately reproduces observed food-web characteristics in the steady state. It is based on the observation that most consumers are larger than their resource species and the hypothesis that speciation and extinction rates decrease with increasing body mass. Results give strong support to the evolutionary hypothesis.  相似文献   

15.
Herbivorous top-down forces and bottom-up competition for nutrients determine the coexistence and relative biomass patterns of producer species. Combining models of predator-prey and producer-nutrient interactions with a structural model of complex food webs, I investigated these two aspects in a dynamic food-web model. While competitive exclusion leads to persistence of only one producer species in 99.7% of the simulated simple producer communities without consumers, embedding the same producer communities in complex food webs generally yields producer coexistence. In simple producer communities, the producers with the most efficient nutrient-intake rates increase in biomass until they competitively exclude inferior producers. In food webs, herbivory predominantly reduces the biomass density of those producers that dominated in producer communities, which yields a more even biomass distribution. In contrast to prior analyses of simple modules, this facilitation of producer coexistence by herbivory does not require a trade-off between the nutrient-intake efficiency and the resistance to herbivory. The local network structure of food webs (top-down effects of the number of herbivores and the herbivores' maximum consumption rates) and the nutrient supply (bottom-up effect) interactively determine the relative biomass densities of the producer species. A strong negative feedback loop emerges in food webs: factors that increase producer biomasses also increase herbivory, which reduces producer biomasses. This negative feedback loop regulates the coexistence and biomass patterns of the producers by balancing biomass increases of producers and biomass fluxes to herbivores, which prevents competitive exclusion.  相似文献   

16.
1. Connectance is a parameter of central importance in determining food-web structure, but the processes determining its value remain unclear. In evaluating possible explanations it is useful to know what patterns, and values, of connectance occur in food webs assembled at random from a set of species in a regional species pool; i.e. where the number of links is determined by the morphological features of the species present, not by the immediate effects of energetics or stability on the particular web. 2. This study examines, by means of laboratory experiments, the occurrence of potential feeding interactions among a set of freshwater invertebrate species randomly selected from different freshwater sites in a geographical region. The results from pairwise feeding trials are used to construct two ‘theoretical’ food webs, in which the patterns and values of connectance are examined. 3. Analyses of these webs indicate that their structure is consistent with the observed values in previously documented ‘real’ webs. Directed connectance values of 0.12–0.16 (or less) suggest that the assembled webs are no more connected than many freshwater webs from natural systems. The number of links per species increases curvilinearly with the number of species, during web assembly, consistent with recent hypotheses. 4. These results also indicate that quantifying, and understanding the determinants of, trophic generalism or specialism does have implications for understanding how connectance is constrained in real webs. Freshwater invertebrates seem to be relatively generalist, and freshwater food webs perhaps correspondingly highly connected. Such arguments have implications for interpreting other aspects of food-web structure in these systems, and for parameterizing models that are based on connectance.  相似文献   

17.
Parasites have the capacity to regulate host populations and may be important determinants of community structure, yet they are usually neglected in studies of food webs. Parasites can provide much of the information on host biology, such as diet and migration, that is necessary to construct accurate webs. Because many parasites have complex life cycles that involve several different hosts, and often depend on trophic interactions for transmission, parasites provide complementary views of web structure and dynamics. Incorporation of parasites in food webs can substantially after baste web properties, Including connectance, chain length and proportions of top and basal species, and can allow the testing of specific hypotheses related to food-web dynamics.  相似文献   

18.
Food-web complexity emerging from ecological dynamics on adaptive networks   总被引:1,自引:0,他引:1  
Food webs are complex networks describing trophic interactions in ecological communities. Since Robert May's seminal work on random structured food webs, the complexity-stability debate is a central issue in ecology: does network complexity increase or decrease food-web persistence? A multi-species predator-prey model incorporating adaptive predation shows that the action of ecological dynamics on the topology of a food web (whose initial configuration is generated either by the cascade model or by the niche model) render, when a significant fraction of adaptive predators is present, similar hyperbolic complexity-persistence relationships as those observed in empirical food webs. It is also shown that the apparent positive relation between complexity and persistence in food webs generated under the cascade model, which has been pointed out in previous papers, disappears when the final connection is used instead of the initial one to explain species persistence.  相似文献   

19.
20.
Plant communities are shaped by bottom-up processes such as competition for nutrients and top-down processes such as herbivory. Although much theoretical work has studied how herbivores can mediate plant species coexistence, indirect effects caused by the carnivores that consume herbivores have been largely ignored. These carnivores can have significant indirect effects on plants by altering herbivore density (density-mediated effects) and behavior (trait-mediated effects). Carnivores that differ in traits, particularly in their hunting mode, cause different indirect effects on plants and, ultimately, different plant community compositions. We analyze a food-web model to determine how plant coexistence is affected by herbivore-consuming carnivores, contrasting those causing only density-mediated effects with those causing trait-mediated effects as well. In the latter case, herbivores can adjust their consumption of a refuge plant species. We derive a general graphical model to study the interplay of density- and trait-mediated effects. We show that carnivores eliciting both effects can sustain plant species coexistence, given intermediate intensities of behavioral adjustments. Coexistence is more likely, and more stable, if the refuge plant is competitively dominant. These results extend our understanding of carnivore indirect effects in food webs and show that behavioral effects can have major consequences on plant community structure, stressing the need for theoretical approaches that incorporate dynamical traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号