首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The laminin G-like (LG) domains of laminin-111, a glycoprotein widely expressed during embryogenesis, provide cell anchoring and receptor binding sites that are involved in basement membrane assembly and cell signaling. We now report the crystal structure of the laminin alpha1LG4-5 domains and provide a mutational analysis of heparin, alpha-dystroglycan, and galactosylsulfatide binding. The two domains of alpha1LG4-5 are arranged in a V-shaped fashion similar to that observed with laminin alpha2 LG4-5 but with a substantially different interdomain angle. Recombinant alpha1LG4-5 binding to heparin, alpha-dystroglycan, and sulfatides was dependent upon both shared and unique contributions from basic residues distributed in several clusters on the surface of LG4. For heparin, the greatest contribution was detected from two clusters, 2719RKR and 2791KRK. Binding to alpha-dystroglycan was particularly dependent on basic residues within 2719RKR, 2831RAR, and 2858KDR. Binding to galactosylsulfatide was most affected by mutations in 2831RAR and 2766KGRTK but not in 2719RKR. The combined analysis of structure and activities reveal differences in LG domain interactions that should enable dissection of biological roles of different laminin ligands.  相似文献   

2.
Laminin G-like (LG) modules in the extracellular matrix glycoproteins laminin, perlecan, and agrin mediate the binding to heparin and the cell surface receptor alpha-dystroglycan (alpha-DG). These interactions are crucial to basement membrane assembly, as well as muscle and nerve cell function. The crystal structure of the laminin alpha 2 chain LG5 module reveals a 14-stranded beta sandwich. A calcium ion is bound to one edge of the sandwich by conserved acidic residues and is surrounded by residues implicated in heparin and alpha-DG binding. A calcium-coordinated sulfate ion is suggested to mimic the binding of anionic oligosaccharides. The structure demonstrates a conserved function of the LG module in calcium-dependent lectin-like alpha-DG binding.  相似文献   

3.
The 395-residue proteolytic fragment E3, which comprises the two most C-terminal LG modules of the mouse laminin alpha1 chain, was previously shown to contain major binding sites for heparin, alpha-dystroglycan and sulfatides. The same fragment (alpha1LG4-5) and its individual alpha1LG4 and alpha1LG5 modules have now been obtained by recombinant production in mammalian cells. These fragments were apparently folded into a native form, as shown by circular dichroism, electron microscopy and immunological assays. Fragment alpha1LG4-5 bound about five- to tenfold better to heparin, alpha-dystroglycan and sulfatides than E3. These binding activities could be exclusively localized to the alpha1LG4 module. Side-chain modifications and proteolysis demonstrated that Lys and Arg residues in the C-terminal region of alpha1LG4 are essential for heparin binding. This was confirmed by 14 single to triple point mutations, which identified three non-contiguous basic regions (positions 2766-2770, 2791-2793, 2819-2820) as contributing to both heparin and sulfatide binding. Two of these regions were also recognized by monoclonal antibodies which have previously been shown to inhibit heparin binding. The same three regions and a few additional basic residues also make major contributions to the binding of the cellular receptor alpha-dystroglycan, indicating a larger binding epitope. The data are also consistent with previous findings that heparin competes for alpha-dystroglycan binding.  相似文献   

4.
The laminins are large heterotrimeric glycoproteins with fundamental roles in basement membrane architecture and function. The C-terminus of the laminin alpha chain contains a tandem of five laminin G-like (LG) domains. We report the 2.0 A crystal structure of the laminin alpha2 LG4-LG5 domain pair, which harbours binding sites for heparin and the cell surface receptor alpha-dystroglycan, and is 41% identical to the laminin alpha1 E3 fragment. LG4 and LG5 are arranged in a V-shaped fashion related by a 110 degrees rotation about an axis passing near the domain termini. An extended N-terminal segment is disulfide bonded to LG5 and stabilizes the domain pair. Two calcium ions, one each in LG4 and LG5, are located 65 A apart at the tips of the domains opposite the polypeptide termini. An extensive basic surface region between the calcium sites is proposed to bind alpha-dystroglycan and heparin. The LG4-LG5 structure was used to construct a model of the laminin LG1-LG5 tandem and interpret missense mutations underlying protein S deficiency.  相似文献   

5.
The C-terminal G domain of the mouse laminin alpha2 chain consists of five lamin-type G domain (LG) modules (alpha2LG1 to alpha2LG5) and was obtained as several recombinant fragments, corresponding to either individual modules or the tandem arrays alpha2LG1-3 and alpha2LG4-5. These fragments were compared with similar modules from the laminin alpha1 chain and from the C-terminal region of perlecan (PGV) in several binding studies. Major heparin-binding sites were located on the two tandem fragments and the individual alpha2LG1, alpha2LG3 and alpha2LG5 modules. The binding epitope on alpha2LG5 could be localized to a cluster of lysines by site-directed mutagenesis. In the alpha1 chain, however, strong heparin binding was found on alpha1LG4 and not on alpha1LG5. Binding to sulfatides correlated to heparin binding in most but not all cases. Fragments alpha2LG1-3 and alpha2LG4-5 also bound to fibulin-1, fibulin-2 and nidogen-2 with Kd = 13-150 nM. Both tandem fragments, but not the individual modules, bound strongly to alpha-dystroglycan and this interaction was abolished by EDTA but not by high concentrations of heparin and NaCl. The binding of perlecan fragment PGV to alpha-dystroglycan was even stronger and was also not sensitive to heparin. This demonstrated similar binding repertoires for the LG modules of three basement membrane proteins involved in cell-matrix interactions and supramolecular assembly.  相似文献   

6.
We previously reported that the LG4 domain of the laminin alpha4 chain is responsible for high-affinity heparin binding. To specify the amino acid residues involved in this activity, we produced a series of alpha4 LG4-fusion proteins in which each of the 27 basic residues (arginine, R; histidine; lysine, K) were replaced one by one with alanine (A). When the effective residues R1520A, K1531A, K1533A, and K1539A are mapped on a structural model, they form a track on the concave surface of the beta-sandwich, suggesting that they interact with adjacent sulfate groups along the heparin chain. Whereas low-affinity heparin-binding sites of other LG domains have been located at the top of the beta-sheet sandwich opposite the N and C termini, the residues for high-affinity heparin binding of alpha4 LG4 reveal a new topological area of the LG module.  相似文献   

7.
Talts JF  Timpl R 《FEBS letters》1999,458(3):319-323
A RRKRRQ sequence unique to the LG3 module of the laminin alpha2 chain was previously shown to be sensitive to endogenous proteolysis during the recombinant production of the tandem array alpha2LG1-3. Mutation of RQ surrounding the cleaved peptide bond did not prevent this processing and intracellular degradation. Alanine mutagenesis of three alternate basic residues, however, was shown to prevent the cleavage in alpha2LG1-3, allowing for the alpha2LG3 module to be obtained as a folded, globular fragment. The mutation did not change heparin and sulfatide binding or cell adhesion of alpha2LG1-3 which can be mediated by alpha3beta1 and alpha6beta1 integrins. It did, however, cause a 10-fold reduction in alpha-dystroglycan binding. The data favor the interpretation that binding epitopes for heparin/sulfatides, beta1 integrins and alpha-dystroglycan occupy different parts of the alpha2LG1-3 structure.  相似文献   

8.
The C-terminal G domains of laminin alpha chains have been implicated in various cellular and other interactions. The G domain of the alpha4 chain was now produced in transfected mammalian cells as two tandem arrays of LG modules, alpha4LG1-3 and alpha4LG4-5. The recombinant fragments were shown to fold into globular structures and could be distinguished by specific antibodies. Both fragments were able to bind to heparin, sulfatides, and the microfibrillar fibulin-1 and fibulin-2. They were, however, poor substrates for cell adhesion and had only a low affinity for the alpha-dystroglycan receptor when compared with the G domains of the laminin alpha1 and alpha2 chains. Yet antibodies to alpha4LG1-3 but not to alpha4LG4-5 clearly inhibited alpha(6)beta(1) integrin-mediated cell adhesion to laminin-8, indicating the participation of alpha4LG1-3 in a cell-adhesive structure of higher complexity. Proteolytic processing within a link region between the alpha4LG3 and alpha4LG4 modules was shown to occur during recombinant production and in endothelial and Schwann cell culture. Cleavage could be attributed to three different peptide bonds and is accompanied by the release of the alpha4LG4-5 segment. Immunohistology demonstrated abundant staining of alpha4LG1-3 in vessel walls, adipose, and perineural tissue. No significant staining was found for alpha4LG4-5, indicating their loss from tissues. Immunogold staining demonstrated an association of the alpha4 chain primarily with microfibrillar regions rather than with basement membranes, while laminin alpha2 chains appear primarily associated with various basement membranes.  相似文献   

9.
The laminin alpha1 chain is a subunit of laminin-1, a heterotrimeric basement membrane protein. The LG4-5 module at the C terminus of laminin alpha1 contains major binding sites for heparin, sulfatide, and alpha-dystroglycan and plays a critical role in early embryonic development. We previously identified active synthetic peptides AG73 and EF-1 from the sequence of laminin alpha1 LG4 for binding to syndecan and integrin alpha2beta1, respectively. However, their activity and functional relationship within the laminin-1 and LG4 as well as the functional relation between these sites and alpha-dystroglycan binding sites in LG4 are not clear. To address these questions, we created mutant recombinant LG4 proteins containing alanine substitutions within the AG73 (M1), EF-1 (M2, M3), and alpha-dystroglycan binding sites (M4, M5) and analyzed their activities. We found that recombinant proteins rec-M1 and rec-M5, containing mutations within M1 and M5, respectively, did not bind heparin or lymphoid cell lines expressing syndecans. These results suggest that LG4 binds to heparin and syndecans through M1 and M5. Rec-M1 and rec-M5 reduced fibroblast attachment, whereas mutant rec-M2 and rec-M3 retained cell attachment activity but did not promote cell spreading. Fibroblast attachment to rec-LG4 was inhibited by heparin but not by integrin antibodies. Spreading of fibroblasts on rec-LG4 was inhibited by anti-integrin alpha2 and beta1 but not by anti-integrin alpha1 and alpha6. These results suggest that the M1 and M5 sites are necessary for cell attachment on LG4 through syndecans and that the EF-1 site is for cell spreading activity through integrin alpha2beta1. In contrast, laminin-1-mediated fibroblast attachment and spreading were not inhibited by heparin or anti-integrin alpha2. Our findings indicate that LG4 has a unique function distinct from laminin-1 and suggest that laminin alpha1 LG4-5 may also be produced by a proteolytic cleavage in certain tissues where it exerts its activity.  相似文献   

10.
G domains of the mouse laminin alpha 1 and alpha 4 chains consisting of its five subdomains LG1-LG5 were overexpressed in Chinese hamster ovary cells and purified by heparin chromatography. alpha 1LG1-LG5 and alpha 4LG1-LG5 eluted at NaCl concentrations of 0.30 and 0.47 m, respectively. In solid phase binding assays with immobilized heparin, half-maximal concentrations of 14 (alpha 1LG1-LG5) and 1.4 nm (alpha 4LG1-LG5) were observed. N-Glycan cleavage of alpha 4LG1-LG5 did not affect affinity to heparin. The affinity of alpha 4LG1-LG5 was significantly reduced upon denaturation with 8 m urea but could be recovered by removing urea. Chymotrypsin digestion of alpha 4LG1-LG5 yielded high and low heparin affinity fragments containing either the alpha 4LG4-LG5 or alpha 4LG2-LG3 modules, respectively. Trypsin digestion of heparin-bound alpha 4LG1-LG5 yielded a high affinity fragment of about 190 residues corresponding to the alpha 4LG4 module indicating that the high affinity binding site is contained within alpha 4LG4. Competition for heparin binding of synthetic peptides covering the alpha 4LG4 region with complete alpha 4LG1-LG5 suggests that the sequence AHGRL1521 is crucial for high affinity binding. Introduction of mutation of H1518A or R1520A in glutathione S-transferase fusion protein of the alpha 4LG4 module produced in Escherichia coli markedly reduced heparin binding activity of the wild type. When compared with the known structure of alpha 2LG5, this sequence corresponds to the turn connecting strands E and F of the 14-stranded beta-sheet sandwich, which is opposite to the proposed binding sites for calcium ion, alpha-dystroglycan, and heparan sulfate.  相似文献   

11.
Structure and function of laminin LG modules.   总被引:19,自引:0,他引:19  
Laminin G domain-like (LG) modules of approximately 180-200 residues are found in a number of extracellular and receptor proteins and often are present in tandem arrays. LG modules are implicated in interactions with cellular receptors (integrins, alpha-dystroglycan), sulfated carbohydrates and other extracellular ligands. The recently determined crystal structures of LG modules of the laminin alpha2 chain reveal a compact beta sandwich fold and identify a novel calcium binding site. Binding epitopes for heparin, sulfatides and alpha-dystroglycan have been mapped by site-directed mutagenesis and show considerable overlap. The epitopes are located in surface loops around the calcium site, which in other proteins (agrin, neurexins) are modified by alternative splicing. Efficient ligand binding often requires LG modules to be present in tandem. The close proximity of the N- and C-termini in the LG module, as well as a unique link region between laminin LG3 and LG4, impose certain constraints on the arrangement of LG tandems. Further modifications may be introduced by proteolytic processing of laminin G domains, which is known to occur in the alpha2, alpha3 and alpha4 chains.  相似文献   

12.
The G domain of the laminin alpha chains consists of five homologous G modules (LG1-5) and has been implicated in various biological functions. In this study, we identified an active site for cell and heparin binding within the laminin alpha5 G domain using recombinant proteins and synthetic peptides. Recombinant LG4, LG5, and LG4-5 modules were generated using a mammalian expression system. The LG4 and LG4-5 modules were highly active for cell binding, whereas the LG5 module alone showed only weak binding. Heparin inhibited cell binding to the LG4-5 module, whereas no inhibition was observed with EDTA or antibodies against the integrin beta(1) subunit. These results suggest that the LG4-5 module interacts with a cell surface receptor containing heparan sulfate but not with integrins. Solid-phase assays and surface plasmon resonance measurements demonstrated strong binding of the LG4 and LG4-5 modules to heparin with K(D) values in the nanomolar range, whereas a 16-fold lower value was determined for the LG5 module. Treatment with glycosidases demonstrated that N-linked carbohydrates on the LG5 module are complex-type oligosaccharides. The LG4-5 module, devoid of N-linked carbohydrates, exhibited similar binding kinetics toward heparin. Furthermore, cell binding was unaffected by removal of N-linked glycosylation. To localize active sites on the LG4 module, various synthetic peptides were used to compete with binding of the tandem module to heparin and cells. Peptide F4 (AGQWHRVSVRWG) inhibited binding, whereas a scrambled peptide of F4 failed to compete binding. Alanine replacements demonstrated that one arginine residue within F4 was important for cell and heparin binding. Our results suggest a critical role of the LG4 module for heparan sulfate-containing receptor binding within the laminin alpha5 chain.  相似文献   

13.
The laminin-type globular (LG) domains of laminin alpha chains have been implicated in various cellular interactions that are mediated through receptors such as integrins, alpha-dystroglycan, syndecans, and the Lutheran blood group glycoprotein (Lu). Lu, an Ig superfamily transmembrane receptor specific for laminin alpha5, is also known as basal cell adhesion molecule (B-CAM). Although Lu/B-CAM binds to the LG domain of laminin alpha5, the binding site has not been precisely defined. To better delineate this binding site, we produced a series of recombinant laminin trimers containing modified alpha chains, such that all or part of alpha5LG was replaced with analogous segments of human laminin alpha1LG. In solid phase binding assays using a soluble Lu (Lu-Fc) composed of the Lu extracellular domain and human IgG1 Fc, we found that Lu bound to Mr5G3, a recombinant laminin containing alpha5 domains LN through LG3 fused to human laminin alpha1LG4-5. However, Lu/B-CAM did not bind other recombinant laminins containing alpha5LG3 unless alpha5LG1-2 was also present. A recombinant alpha5LG1-3 tandem lacking the laminin coiled coil (LCC) domain did not reproduce the activity of Lu/B-CAM binding. Therefore, proper structure of the alpha5LG1-3 tandem with the LCC domain was essential for the binding of Lu/B-CAM to laminin alpha5. Our results also suggest that the binding site for Lu/B-CAM on laminin alpha5 may overlap with that of integrins alpha3beta1 and alpha6beta1.  相似文献   

14.
Laminin-5, consisting of the alpha 3, beta 3, and gamma 2 chains, is localized in the skin basement membrane and supports the structural stability of the epidermo-dermal linkage and regulates various cellular functions. The alpha chains of laminins have been shown to have various biological activities. In this study, we identified a sequence of the alpha 3 chain C-terminal globular domain (LG1-LG5 modules) required for both heparin binding and cell adhesion using recombinant proteins and synthetic peptides. We found that the LG3 and LG4 modules have activity for heparin binding and that LG4 has activity for cell adhesion. Studies with synthetic peptides delineated the A3G75aR sequence (NSFMALYLSKGR, residues 1412--1423) within LG4 as a major site for both heparin and cell binding. Substitution mutations in LG4 and A3G75aR identified the Lys and Arg of the A3G75aR sequence as critical for these activities. Cell adhesion to LG4 and A3G75aR was inhibited by heparitinase I treatment of cells, suggesting that cell binding to the A3G75aR site was mediated by cell surface heparan sulfate proteoglycans. We showed by affinity chromatography that syndecan-2 from fibroblasts bound to LG4. Solid-phase assays confirmed that syndecan-2 interacted with the A3G75aR peptide sequence. Stably transfected 293T cells with expression vectors for syndecan-2 and -4, but not glypican-1, specifically adhered to LG4 and A3G75aR. These results indicate that the A3G75aR sequence within the laminin alpha 3 LG4 module is responsible for cell adhesion and suggest that syndecan-2 and -4 mediate this activity.  相似文献   

15.
The adhesive interactions of cells with laminins are mediated by integrins and non-integrin-type receptors such as alpha-dystroglycan and syndecans. Laminins bind to these receptors at the C-terminal globular domain of their alpha chains, but the regions recognized by these receptors have not been mapped precisely. In this study, we sought to locate the binding sites of laminin-10 (alpha5beta1gamma1) for alpha(3)beta(1) and alpha(6)beta(1) integrins and alpha-dystroglycan through the production of a series of recombinant laminin-10 proteins with deletions of the LG (laminin G-like) modules within the globular domain. We found that deletion of the LG4-5 modules did not compromise the binding of laminin-10 to alpha(3)beta(1) and alpha(6)beta(1) integrins but completely abrogated its binding to alpha-dystroglycan. Further deletion up to the LG3 module resulted in loss of its binding to the integrins, underlining the importance of LG3 for integrin binding by laminin-10. When expressed individually as fusion proteins with glutathione S-transferase or the N-terminal 70-kDa region of fibronectin, only LG4 was capable of binding to alpha-dystroglycan, whereas neither LG3 nor any of the other LG modules retained the ability to bind to the integrins. Site-directed mutagenesis of the LG3 and LG4 modules indicated that Asp-3198 in the LG3 module is involved in the integrin binding by laminin-10, whereas multiple basic amino acid residues in the putative loop regions are involved synergistically in the alpha-dystroglycan binding by the LG4 module.  相似文献   

16.
The biological activities of the laminin α2 chain LG4–5 module result from interactions with cell surface receptors, such as heparan sulfate proteoglycans and α-dystroglycan. In this study, heparin and α-dystroglycan binding sequences were identified using 42 overlapping synthetic peptides from the LG4–5 module and using recombinant LG4–5 protein (rec-α2LG4–5). Physiological activities of the active peptides were also examined in explants of submandibular glands. Heparin binding screens showed that the A2G78 peptide (GLLFYMARINHA) bound to heparin and prevented its binding to rec-α2LG4–5. Furthermore, alanine substitution of the arginine residue in the A2G78 site on rec-α2LG4–5 decreased heparin binding activity. When α-dystroglycan binding of the peptides was screened, two peptides, A2G78 and A2G80 (VQLRNGFPYFSY), bound α-dystroglycan. A2G78 and A2G80 also inhibited α-dystroglycan binding of rec-α2LG4–5. A2G78 and A2G80 specifically inhibited end bud formation of submandibular glands in culture. These results suggest that the A2G78 and A2G80 sites play functional roles as heparan sulfate- and α-dystroglycan-binding sites in the module. These peptides are useful for elucidating molecular mechanisms of heparan sulfate- and/or α-dystroglycan-mediated biological functions of the laminin α2 chain.  相似文献   

17.
Laminins, heterotrimeric glycoproteins in the basement membrane, are involved in diverse biological activities. So far, five alpha, three beta, and three gamma chains have been identified, and at least 15 laminin isoforms exist composed of various combinations of the different three chains. The major cell-surface receptors for laminins are integrins and proteoglycans, such as dystroglycans and syndecans. Previously, we reported that synthetic peptide A4G82 (TLFLAHGRLVFM, mouse laminin alpha4 chain residues 1514-1525) showed strong cell attachment and syndecan binding activities. On the basis of the crystal structure of the LG module and sequence alignment, A4G82 is located in the connecting loop region between beta-strands E and F in the laminin alpha4 chain LG4 module. Here, we have focused on the structural importance of this E-F loop region for the biological activity of the alpha4 chain LG4 module. To determine the importance of the loop structure, we synthesized peptide A4G82X (cyclo-A4G82X, Cys-TLFLAHGRLVFX-Cys, X= norleucine), which was cyclized via disulfide bridges at both the N- and C-termini. The cyclic peptides derived from A4G82X inhibited the heparin binding activity of the alpha4 chain G domain and promoted HT-1080 cell attachment better than the corresponding linear peptides. We determined FLAHGRLVFX as a minimal sequence of cyclo-A4G82X important for cell adhesion and heparin binding using a series of truncated peptides. Moreover, HT-1080 cell attachment to the cyclic peptides was more efficiently blocked by heparin than cell attachment to the linear peptides. Furthermore, the cyclic peptides showed significantly enhanced syndecan-2-mediated cell attachment activity. These results indicate that the activity of A4G82 is highly conformation-dependent, suggesting that the E-F loop structure is crucial for its biological activity.  相似文献   

18.
Dystroglycan is a receptor for the basement membrane components laminin-1, -2, perlecan, and agrin. Genetic studies have revealed a role for dystroglycan in basement membrane formation of the early embryo. Dystroglycan binding to the E3 fragment of laminin-1 is involved in kidney epithelial cell development, as revealed by antibody perturbation experiments. E3 is the most distal part of the carboxyterminus of laminin alpha1 chain, and is composed of two laminin globular (LG) domains (LG4 and LG5). Dystroglycan-E3 interactions are mediated solely by discrete domains within LG4. Here we examined the role of this interaction for the development of mouse embryonic salivary gland and lung. Dystroglycan mRNA was expressed in epithelium of developing salivary gland and lung. Immunofluorescence demonstrated dystroglycan on the basal side of epithelial cells in these tissues. Antibodies against dystroglycan that block binding of alpha-dystroglycan to laminin-1 perturbed epithelial branching morphogenesis in salivary gland and lung organ cultures. Inhibition of branching morphogenesis was also seen in cultures treated with polyclonal anti-E3 antibodies. One monoclonal antibody (mAb 200) against LG4 blocked interactions between a-dystroglycan and recombinant laminin alpha1LG4-5, and also inhibited salivary gland and lung branching morphogenesis. Three other mAbs, also specific for the alpha1 carboxyterminus and known not to block branching morphogenesis, failed to block binding of alpha-dystroglycan to recombinant laminin alpha1LG4-5. These findings clarify why mAbs against the carboxyterminus of laminin alpha1 differ in their capacity to block epithelial morphogenesis and suggest that dystroglycan binding to alpha1LG4 is important for epithelial morphogenesis of several organs.  相似文献   

19.
The laminin alpha3 chain LG4 module (alpha3LG4 module) has cell adhesion, heparin binding, migration, and neurite outgrowth activities. The LG4 module consists of a 14-stranded beta-sheet (A-N) sandwich structure. Previously, we identified the A3G756 sequence (KNSFMALYLSKGRLVFALG in the human laminin alpha3 chain 1411-1429) as a biologically active site in the alpha3LG4 module. The A3G756 sequence is located on the E and F strands based on a crystal structure-based sequence alignment. The Lys1421 and Arg1423 residues, critical amino acids for the biological activity of A3G756, are located on the E-F connecting loop region as a KGR sequence. In this study, we focused on the KGR sequence and investigated the structural requirements of the E-F connecting loop region in the alpha3LG4 module. We synthesized three linear peptides containing the KGR sequence at the middle and the N and C termini and also prepared three cyclic analogues corresponding to the linear peptides. cyclo-hEF3A (CLYLSKGRLVFAC), which is a cyclic peptide containing the KGR sequence at the middle, showed the strongest inhibitory effect on both the heparin binding and the cell attachment to the recombinant alpha3LG4 module protein. The cyclo-hEF3A peptide was more active for syndecan-4 binding and neurite outgrowth than the linear form. Furthermore, we found that the structure of cyclo-hEF3A is similar to that of the connecting E-F loop region in human laminin alpha3LG4 module by structural analysis using molecular dynamics simulations. These results suggest that the loop structure of the E-F connecting region of the alpha3LG4 module is important for its biological activities. The cyclo-hEF3A peptide may be useful for the development of therapeutic reagents especially for wound healing and nerve regeneration.  相似文献   

20.
Previously, a signaling pathway was described [Oak, Zhou, and Jarrett (2003) J. Biol. Chem. 278, 39287-39295] that links matrix laminin binding on the outside of the sarcolemma to Grb2 binding to syntrophin on the inside surface of the sarcolemma and by way of Grb2-Sos1-Rac1-PAK1-JNK ultimately results in the phosphorylation of c-jun on Ser(65). How this signaling is initiated was investigated. Grb2-binding to syntrophin is increased by the addition of either laminin-1 or the isolated laminin alpha1 globular domain modules LG4-5, a protein referred to as E3. This identifies the LG4-5 sequences as the region of laminin responsible for signaling. Since laminin alpha1 LG4 is known to bind alpha-dystroglycan, this directly implicates alpha-dystroglycan as the laminin-signaling receptor. E3 or laminin-1 increase Grb2-binding and Rac1 activation. In the presence of E3 or laminin-1, syntrophin is phosphorylated on a tyrosine residue, and this increases and alters Grb2 binding. The alpha-dystroglycan antibody, IIH6, which blocks binding of laminins to alpha-dystroglycan, blocks both the laminin-induced Sos1/2 recruitment and syntrophin phosphorylation, showing that it is alpha-dystroglycan binding the LG4-5 region of laminin that is responsible. The C-terminal SH3 domain of Grb2 (C-SH3) binds only to nonphosphorylated syntrophin, and phosphorylation causes the Grb2 SH2 domain to bind and prevents SH3 binding. Syntrophin, tyrosine phosphate, beta-dystroglycan, and Rac1 all co-localize to the sarcolemma of rat muscle sections. A model for how this phosphorylation may initiate downstream events in laminin signaling is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号