首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sphingomyelin plays a very important role both in cell membrane formation that may well have an impact on the development of diseases like atherosclerosis and diabetes. However, the molecular mechanism that governs intracellular and plasma membrane SM levels is largely unknown. Recently, two isoforms of sphingomyelin synthase (SMS1 and SMS2), the last enzyme for SM de novo synthesis, have been cloned. We have hypothesized that SMS1 and SMS2 are the two most likely candidates responsible for the SM levels in the cells and on the plasma membrane. To test this hypothesis, cultured cells were treated with tricyclodecan-9-yl-xanthogenate (D609), an inhibitor of SMS, or with SMS1 and SMS2 siRNAs. Cells were then pulsed with [14C]-L-serine (a precursor of all sphingolipids). SMS activity and [14C]-SM in the cells were monitored. We found that SMS activity was significantly decreased in cells after D609 or SMS siRNA treatment, compared with controls. SMS inhibition by D609 or SMS siRNAs significantly decreased intracellular [14C]-SM levels. We measured cellular lipid levels, including SM, ceramide, phosphatidylcholine, and diacylglycerol and found that SMS1 and SMS2 siRNA treatment caused a significant decrease of SM levels (20% and 11%, respectively), compared to control siRNA treatment; SMS1 but not SMS2 siRNA treatment caused a significant increase of ceramide levels (10%). There was a decreasing tendency for diacylglycerol levels after both SMS1 and SMS2 siRNA treatment, however, it was not statistical significant. As shown by lipid rafts isolation and lipid determination, SMS1 and SMS2 siRNA treatment led to a decrease of SM content in detergent-resistant lipid rafts on the cell membrane. Furthermore, SMS1 and SMS2 siRNA-treated cells had a stronger resistance than did control siRNA-treated cells to lysenin (a protein that causes cell lysis due to its affinity for plasma membrane SM). These results indicate that both SMS1 and SMS2 contribute to SM de novo synthesis and control SM levels in the cells and on the cell membrane including plasma membrane, implying an important relationship between SMS activity and cell functions.  相似文献   

2.
Lipid microdomains or caveolae, small invaginations of plasma membrane, have emerged as important elements for lipid uptake and glucose homeostasis. Sphingomyelin (SM) is one of the major phospholipids of the lipid microdomains. In this study, we investigated the physiological function of sphingomyelin synthase 2 (SMS2) using SMS2 knock-out mice, and we found that SMS2 deficiency prevents high fat diet-induced obesity and insulin resistance. Interestingly, in the liver of SMS2 knock-out mice, large and mature lipid droplets were scarcely observed. Treatment with siRNA for SMS2 also decreased the large lipid droplets in HepG2 cells. Additionally, the siRNA of SMS2 decreased the accumulation of triglyceride in liver of leptin-deficient (ob/ob) mice, strongly suggesting that SMS2 is involved in lipid droplet formation. Furthermore, we found that SMS2 exists in lipid microdomains and partially associates with the fatty acid transporter CD36/FAT and with caveolin 1, a scaffolding protein of caveolae. Because CD36/FAT and caveolin 1 exist in lipid microdomains and are coordinately involved in lipid droplet formation, SMS2 is implicated in the modulation of the SM in lipid microdomains, resulting in the regulation of CD36/FAT and caveolae. Here, we established new cell lines, in which we can completely distinguish SMS2 activity from SMS1 activity, and we demonstrated that SMS2 could convert ceramide produced in the outer leaflet of the plasma membrane into SM. Our findings demonstrate the novel and dynamic regulation of lipid microdomains via conformational changes in lipids on the plasma membrane by SMS2, which is responsible for obesity and type 2 diabetes.  相似文献   

3.
SMS [SM (sphingomyelin) synthase] is a class of enzymes that produces SM by transferring a phosphocholine moiety on to ceramide. PC (phosphatidylcholine) is believed to be the phosphocholine donor of the reaction with consequent production of DAG (diacylglycerol), an important bioactive lipid. In the present study, by modulating SMS1 and SMS2 expression, the role of these enzymes on the elusive regulation of DAG was investigated. Because we found that modulation of SMS1 or SMS2 did not affect total levels of endogenous DAG in resting cells, whereas they produce DAG in vitro, the possibility that SMSs could modulate subcellular pools of DAG, once acute activation of the enzymes is triggered, was investigated. Stimulation of SM synthesis was induced by either treatment with short-chain ceramide analogues or by increasing endogenous ceramide at the plasma membrane, and a fluorescently labelled conventional C1 domain [from PKC (protein kinase C)] enhanced in its DAG binding activity was used to probe subcellular pools of DAG in the cell. With this approach, we found, using confocal microscopy and subcellular fractionation, that modulation of SMS1 and, to a lesser extent, SMS2 affected the formation of DAG at the Golgi apparatus. Similarly, down-regulation of SMS1 and SMS2 reduced the localization of the DAG-binding protein PKD (protein kinase D) to the Golgi. These results provide direct evidence that both enzymes are capable of regulating the formation of DAG in cells, that this pool of DAG is biologically active, and for the first time directly implicate SMS1 and SMS2 as regulators of DAG-binding proteins in the Golgi apparatus.  相似文献   

4.
Dong J  Liu J  Lou B  Li Z  Ye X  Wu M  Jiang XC 《Journal of lipid research》2006,47(6):1307-1314
Sphingomyelin synthase 1 (SMS1) and SMS2 are two isoforms of SMS, the last enzyme for sphingomyelin (SM) biosynthesis. To evaluate the role of SMS in vivo in terms of plasma lipoprotein metabolism, we generated recombinant adenovirus vectors containing human SMS1 cDNA (AdV-SMS1), SMS2 cDNA (AdV-SMS2), or the reporter LacZ cDNA (AdV-LacZ) as a control. On day 7 after intravenous infusion of 2 x 10(11) particles of both AdV-SMS1 and AdV-SMS2 into mice, liver SMS1 and SMS2 mRNA levels as well as SMS activity were significantly increased (2.5-, 2.7-, 2.1-, and 2.3-fold, respectively; P < 0.001). Lipoprotein analysis indicated that AdV-SMS1 and AdV-SMS2 treatment caused no changes of total SM and cholesterol levels but significantly decreased HDL-SM and HDL-cholesterol (42% and 38%, and 27% and 25%, respectively; P < 0.05). It also significantly increased non-HDL-SM and non-HDL-cholesterol levels (50% and 35%, and 64% and 61%, respectively; P < 0.05) compared with AdV-LacZ controls. SDS-PAGE showed a significant increase in apolipoprotein B (apoB; P < 0.01) but no changes in apoA-I levels. Moreover, we found that non-HDL from both AdV-SMS1- and AdV-SMS2-treated mice was significantly aggregated after treatment with a mammalian sphingomyelinase, whereas lipoproteins from control animals did not aggregate. To investigate the mechanism of HDL changes, we measured liver scavenger receptor class B type I (SR-BI) levels by Western blot. We found that AdV-SMS1 and AdV-SMS2 mouse liver homogenates contained 50% and 55% higher SR-BI levels than in controls, whereas no change was observed in hepatic ABCA1 levels. An HDL turnover study revealed an increase of plasma clearance rates for [3H]cholesteryl oleyl ether-HDL but not for [125I]HDL in both AdV-SMS1 and AdV-SMS2 mice compared with controls. In conclusion, adenovirus-mediated SMS1 and SMS2 overexpression increased lipoprotein atherogenic potential. Such an effect may contribute to the increased plasma SM levels observed in animal models of atherosclerosis and in human patients with coronary artery disease.  相似文献   

5.
Tricyclodecan-9-yl-xanthogenate (D609) is a selective tumor cytotoxic agent. However, the mechanisms of action of D609 against tumor cells have not been well established. Using U937 human monocytic leukemia cells, we examined the ability of D609 to inhibit sphingomyelin synthase (SMS), since inhibition of SMS may contribute to D609-induced tumor cell cytotoxicity via modulating the cellular levels of ceramide and diacylglycerol (DAG). The results showed that D609 is capable of inducing U937 cell death by apoptosis in a dose- and time-dependent manner. The induction of U937 cell apoptosis was associated with an inhibition of SMS activity and a significant increase in the intracellular level of ceramide and decrease in that of sphingomyelin (SM) and DAG, which resulted in an elevation of the ratio between ceramide and DAG favoring the induction of apoptosis. In addition, incubation of U937 cells with C(6)-ceramide and/or H7 (a selective PKC inhibitor) reduced U937 cell viability; whereas pretreatment of the cells with a PKC activator, PMA or 1-oleoyl-2-acetylglycerol (OAG), attenuated D609-induced U937 cell apoptosis. These results suggest that SMS is a potential target of D609 and inhibition of SMS may contribute to D609-induced tumor cell death via modulation of the cellular levels of ceramide and DAG.  相似文献   

6.
Sphingomyelin synthase (SMS) sits at the crossroads of sphingomyelin (SM), ceramide, diacylglycerol (DAG) metabolism. It utilizes ceramide and phosphatidylcholine as substrates to produce SM and DAG, thereby regulating lipid messengers which play a role in cell survival and apoptosis. There are two isoforms of the enzyme, SMS1 and SMS2. Both SMS1 and SMS2 contain two histidines and one aspartic acid which are evolutionary conserved within the lipid phosphate phosphatase superfamily. In this study, we systematically mutated these amino acids using site-directed mutagenesis and found that each point mutation abolished SMS activity without altering cellular distribution. We also explored the domains which are responsible for cellular distribution of both enzymes. Given their role as a potential regulator of diseases, these findings, coupled with homology modeling of SMS1 and SMS2, will be useful for drug development targeting SMS.  相似文献   

7.
8.
Sphingomyelin synthases (SMS1 and 2) represent a class of enzymes that transfer a phosphocholine moiety from phosphatidylcholine onto ceramide thus producing sphingomyelin and diacylglycerol (DAG). SMS1 localizes at the Golgi while SMS2 localizes both at the Golgi and the plasma membrane. Previous studies from our laboratory showed that modulation of SMS1 and, to a lesser extent, of SMS2 affected the formation of DAG at the Golgi apparatus. As a consequence, down-regulation of SMS1 and SMS2 reduced the localization of the DAG-binding protein, protein kinase D (PKD), to the Golgi. Since PKD recruitment to the Golgi has been implicated in cellular secretion through the trans golgi network (TGN), the effect of down-regulation of SMSs on TGN-to-plasma membrane trafficking was studied. Down regulation of either SMS1 or SMS2 significantly retarded trafficking of the reporter protein vesicular stomatitis virus G protein tagged with GFP (VSVG-GFP) from the TGN to the cell surface. Inhibition of SMSs also induced tubular protrusions from the trans Golgi network reminiscent of inhibited TGN membrane fission. Since a recent study demonstrated the requirement of PKD activity for insulin secretion in beta cells, we tested the function of SMS in this model. Inhibition of SMS significantly reduced insulin secretion in rat INS-1 cells. Taken together these results provide the first direct evidence that both enzymes (SMS1 and 2) are capable of regulating TGN-mediated protein trafficking and secretion, functions that are compatible with PKD being a down-stream target for SMSs in the Golgi.  相似文献   

9.
This review summarizes the cellular bases of the effects of NaCHOleate (2-hydroxyoleic acid; 2OHOA; Minerval) against glioma and other types of tumors. NaCHOleate, activates sphingomyelin synthase (SGMS) increasing the levels of cell membrane sphingomyelin (SM) and diacylglycerol (DAG) together with reductions of phosphatidylethanolamine (PE) and phosphatidylcholine (PC). The increases in the membrane levels of NaCHOleate itself and of DAG induce a translocation and overexpression of protein kinase C (PKC) and subsequent reductions of Cyclin D, cyclin-dependent kinases 4 and 6 (CDKs 4 and 6), hypophosphorylation of the retinoblastoma protein, inhibition of E2F1 and knockdown of dihydrofolate reductase (DHFR) impairing DNA synthesis. In addition in some cancer cells, the increases in SM are associated with Fas receptor (FasR) capping and ligand-free induction of apoptosis. In glioma cell lines, the increases in SM are associated with the inhibition of the Ras/MAPK and PI3K/Akt pathways, in association with p27Kip1 overexpression. Finally, an analysis of the Repository of Molecular Brain Neoplasia Data (REMBRANDT) database for glioma patient survival shows that the weight of SM-related metabolism gene expression in glioma patients' survival is similar to glioma-related genes. Due to its low toxicity and anti-tumoral effect in cell and animal models its status as an orphan drug for glioma treatment by the European Medicines Agency (EMA) was recently acknowledged and a phase 1/2A open label, non-randomized study was started in patients with advanced solid tumors including malignant glioma. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.  相似文献   

10.
Delphine Milhas 《FEBS letters》2010,584(9):1887-19574
The plasma membrane (PM) is a major resource for production of bioactive lipids and contains a large proportion of the cellular sphingomyelin (SM) content. Consequently, the regulation of SM levels at the PM by enzymes such as sphingomyelinase (SMase) and SM synthase 2 (SMS2) can have profound effects - both on biophysical properties of the membrane, but also on cellular signaling. Over the past 20 years, there has been considerable research into the physiological and cellular functions associated with regulation of SM levels, notably with regards to the production of ceramide. In this review, we will summarize this research with particular focus on the SMases and SMS2. We will outline what biological functions are associated with SM metabolism/production at the PM, and discuss what we believe are major challenges that need to be addressed in future studies.  相似文献   

11.
Sphingolipids accumulate in plasma membrane microdomain sites, such as caveolae or lipid rafts. Such microdomains are considered to be important nexuses for signal transduction, although changes in the microdomain lipid components brought about by signaling are poorly understood. Here, we applied a cationic colloidal silica bead method to analyze plasma membrane lipids from monolayer cells cultured in a 10 cm dish. The detergent-resistant fraction from the silica bead-coated membrane was analyzed by LC-MS/MS to evaluate the microdomain lipids. This method revealed that glycosphingolipids composed the microdomains as a substitute for sphingomyelin (SM) in mouse embryonic fibroblasts (tMEFs) from an SM synthase 1/2 double KO (DKO) mouse. The rate of formation of the detergent-resistant region was unchanged compared with that of WT-tMEFs. C2-ceramide (Cer) stimulation caused greater elevations in diacylglycerol and phosphatidic acid levels than in Cer levels within the microdomains of WT-tMEFs. We also found that lipid changes in the microdomains of SM-deficient DKO-tMEFs caused by serum stimulation occurred in the same manner as that of WT-tMEFs. This practical method for analyzing membrane lipids will facilitate future comprehensive analyses of membrane microdomain-associated responses.  相似文献   

12.
Sphingomyelin (SM) plays important roles in regulating structure and function of plasma membrane, but how intracellular localization of SM is regulated in neuronal cells is not understood. Here we show that two isoforms of SM synthase (SMS) are differentially expressed in neuronal subtypes and that only SMS2 proteins localize in neurites of hippocampal neurons. Moreover, SMS proteins induce Lysenin-binding SM clusters exclusively in their vicinity although neurons hardly contain such cluster under control condition. These findings indicate three important notions about SM metabolism in neurons. First, the activity of SMS is the rate-limiting step of SM cluster formation. Second, the SM content or clustering can be modulated by SMS activity. Third, SMS1 and SMS2 play distinct roles in regulating local SM clustering. Particularly, SMS2, rather than SMS1, is likely to be the major enzyme that is important for SM synthesis in the long neurites and its tip, the growth cone.  相似文献   

13.
Sphingomyelin (SM) is a vital component of cellular membranes in organisms ranging from mammals to protozoa. Its production involves the transfer of phosphocholine from phosphatidylcholine to ceramide, yielding diacylglycerol in the process. The mammalian genome encodes two known SM synthase (SMS) isoforms, SMS1 and SMS2. However, the relative contributions of these enzymes to SM production in mammalian cells remained to be established. Here we show that SMS1 and SMS2 are co-expressed in a variety of cell types and function as the key Golgi- and plasma membrane-associated SM synthases in human cervical carcinoma HeLa cells, respectively. RNA interference-mediated depletion of either SMS1 or SMS2 caused a substantial decrease in SM production levels, an accumulation of ceramides, and a block in cell growth. Although SMS-depleted cells displayed a reduced SM content, external addition of SM did not restore growth. These results indicate that the biological role of SM synthases goes beyond formation of SM.  相似文献   

14.
The key host cellular pathway(s) necessary to control the infection caused by inhalation of the environmental fungal pathogen Cryptococcus neoformans are still largely unknown. Here we have identified that the sphingolipid pathway in neutrophils is required for them to exert their killing activity on the fungus. In particular, using both pharmacological and genetic approaches, we show that inhibition of sphingomyelin synthase (SMS) activity profoundly impairs the killing ability of neutrophils by preventing the extracellular release of an antifungal factor(s). We next found that inhibition of protein kinase D (PKD), which controls vesicular sorting and secretion and is regulated by diacylglycerol (DAG) produced by SMS, totally blocks the extracellular killing activity of neutrophils against C. neoformans. The expression of SMS genes, SMS activity and the levels of the lipids regulated by SMS (namely sphingomyelin (SM) and DAG) are up-regulated during neutrophil differentiation. Finally, tissue imaging of lungs infected with C. neoformans using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS), revealed that specific SM species are associated with neutrophil infiltration at the site of the infection. This study establishes a key role for SMS in the regulation of the killing activity of neutrophils against C. neoformans through a DAG-PKD dependent mechanism, and provides, for the first time, new insights into the protective role of host sphingolipids against a fungal infection.  相似文献   

15.
Diacylglycerol (DAG) is a versatile molecule that participates as substrate in the synthesis of structural and energetic lipids, and acts as the physiological signal that activates protein kinase C. Diacylglycerol acyltransferase (DGAT), the last committed enzyme in triacylglycerol synthesis, could potentially regulate the content and use of both signaling and glycerolipid substrate DAG by converting it into triacylglycerol. To test this hypothesis, we stably overexpressed the DGAT1 mouse gene in human lung SV40-transformed fibroblasts (DGAT cells), which contains high levels of DAG. DGAT cells exhibited a 3.9-fold higher DGAT activity and a 3.2-fold increase in triacylglycerol content, whereas DAG and phosphatidylcholine decreased by 70 and 20%, respectively, compared with empty vector-transfected SV40 cells (Control cells). Both acylation and de novo synthesis of phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin were reduced by 30-40% in DGAT cells compared with controls, suggesting that DGAT used substrates for triacylglycerol synthesis that had originally been destined to produce phospholipids. The incorporation of [14C]DAG and [14C]fatty acids released from plasma membrane by additions of either phospholipase C or phospholipase A2 into triacylglycerol was increased by 6.2- and 2.8-fold, respectively, in DGAT cells compared with control cells, indicating that DGAT can attenuate signaling lipids. Finally, DGAT overexpression reversed the neoplastic phenotype because it dramatically reduced the cell growth rate and suppressed the anchorage-independent growth of the SV40 cells. These results strongly support the view that DGAT participates in the regulation of membrane lipid synthesis and lipid signaling, thereby playing an important role in modulating cell growth properties.  相似文献   

16.
The ALP (alkyl-lysophospholipid) edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine; Et-18-OCH3) induces apoptosis in S49 mouse lymphoma cells. To this end, ALP is internalized by lipid raft-dependent endocytosis and inhibits phosphatidylcholine synthesis. A variant cell-line, S49AR, which is resistant to ALP, was shown previously to be unable to internalize ALP via this lipid raft pathway. The reason for this uptake failure is not understood. In the present study, we show that S49AR cells are unable to synthesize SM (sphingomyelin) due to down-regulated SMS1 (SM synthase 1) expression. In parental S49 cells, resistance to ALP could be mimicked by small interfering RNA-induced SMS1 suppression, resulting in SM deficiency and blockage of raft-dependent internalization of ALP and induction of apoptosis. Similar results were obtained by treatment of the cells with myriocin/ISP-1, an inhibitor of general sphingolipid synthesis, or with U18666A, a cholesterol homoeostasis perturbing agent. U18666A is known to inhibit Niemann-Pick C1 protein-dependent vesicular transport of cholesterol from endosomal compartments to the trans-Golgi network and the plasma membrane. U18666A reduced cholesterol partitioning in detergent-resistant lipid rafts and inhibited SM synthesis in S49 cells, causing ALP resistance similar to that observed in S49AR cells. The results are explained by the strong physical interaction between (newly synthesized) SM and available cholesterol at the Golgi, where they facilitate lipid raft formation. We propose that ALP internalization by lipid-raft-dependent endocytosis represents the retrograde route of a constitutive SMS1- and lipid-raft-dependent membrane vesicular recycling process.  相似文献   

17.
Epithelial tissue requires that cells attach to each other and to the extracellular matrix by the assembly of adherens junctions (AJ) and focal adhesions (FA) respectively. We have previously shown that, in renal papillary collecting duct (CD) cells, both AJ and FA are located in sphingomyelin (SM)-enriched plasma membrane microdomains. In the present work, we investigated the involvement of SM metabolism in the preservation of the epithelial cell phenotype and tissue organization. To this end, primary cultures of renal papillary CD cells were performed. Cultured cells preserved the fully differentiated epithelial phenotype as reflected by the presence of primary cilia. Cells were then incubated for 24 h with increasing concentrations of D609, a SM synthase (SMS) inhibitor. Knock-down experiments silencing SMS 1 and 2 were also performed. By combining biochemical and immunofluorescence studies, we found experimental evidences suggesting that, in CD cells, SMS 1 activity is essential for the preservation of cell-cell adhesion structures and therefore for the maintenance of CD tissue/tubular organization. The inhibition of SMS 1 activity induced CD cells to lose their epithelial phenotype and to undergo an epithelial-mesenchymal transition (EMT) process.  相似文献   

18.
Sphingolipids are vital components of eukaryotic membranes involved in the regulation of cell growth, death, intracellular trafficking, and the barrier function of the plasma membrane (PM). While sphingomyelin (SM) is the major sphingolipid in mammals, previous studies indicate that mammalian cells also produce the SM analog ceramide phosphoethanolamine (CPE). Little is known about the biological role of CPE or the enzyme(s) responsible for CPE biosynthesis. SM production is mediated by the SM synthases SMS1 in the Golgi and SMS2 at the PM, while a closely related enzyme, SMSr, has an unknown biochemical function. We now demonstrate that SMS family members display striking differences in substrate specificity, with SMS1 and SMSr being monofunctional enzymes with SM and CPE synthase activity, respectively, and SMS2 acting as a bifunctional enzyme with both SM and CPE synthase activity. In agreement with the PM residency of SMS2, we show that both SM and CPE synthase activities are enhanced at the surface of SMS2-overexpressing HeLa cells. Our findings reveal an unexpected diversity in substrate specificity among SMS family members that should enable the design of specific inhibitors to target the biological role of each enzyme individually.  相似文献   

19.
Recent studies have revealed that sphingomyelin (SM) is involved in metabolic syndrome and is a new target of an anti-metabolic syndrome drug. Deficiencies in the enzyme SM synthase 1 (SMS1) result in severe abnormalities, whereas deficiencies in SMS2 do not. SMS1 and SMS2 synthesize SM under similar conditions, so their respective activities cannot be measured separately. We report here on a sensitive, high-throughput and reliable cell-based method to separately measure each SMS activity and to screen for SMS-specific inhibitors, using HPLC and fluorescent ceramide (Cer) analogs. We isolated SMS-null cells and stably transfected them with SMS1 or SMS2. Using these cells, individual SMS activities could be measured separately. Fluorescent Cer, SM, and glucosylceramide analogs could be separated within 4 min by HPLC using an NH2 column. SMS activities of SMS1- or SMS2-expressing cells seeded in a single well of a 96-well plate could be measured using HPLC and fluorescent Cer analogs. This method clearly demonstrated that treatment of the cells with their respective siRNA or D609, an inhibitor of SMS, resulted in a significant decrease in each SMS activity. These results indicate that our newly developed method can be utilized for screening therapeutics against metabolic syndrome that target SMS2.  相似文献   

20.
SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS)1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog, ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, SMS-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate the head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with Glu permitting SMS-catalyzed CPE production and Asp confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号