首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new technique of visualization of diffusion-convection phenomena at a solid-liquid interface using the luminol chemiluminescent reaction catalyzed by immobilized peroxidase has been previously described (Dimicoli, J.L., M. Nakache, and P. Peronneau, 1982, Biorheology, 19:281-300). We propose now a theoretical model that predicts quantitatively the light fluxes, JL, corresponding to the transfer J of the hydrogen peroxide substrate at the liquid-solid interface in a cylindrical tube for continuous flow experiments. A simple phenomenological relation, J alpha J1/mL (1 less than m less than 3) was first established for each point of the wall. Then, numerical integration showed that, independent of the laminar or turbulent character of the flow, J1/mL was proportional to (S1 Kideal)/(1 + Kideal/ET), where S1 is the bulk substrate concentration, Kideal is the ideal transport coefficient, and ET (in cm.S-1) a phenomenological first-order enzymatic rate constant per unit of wall surface. This relation proved to be satisfactory for all experimental conditions since a single mean value of ET takes into account the experimental data collected for a given enzymated tube in a large range of Reynolds number values (Re) (500 less than Re less than 9,000) and of distances from the entrance of the tube (chi greater than 0.3 cm). This quantitative analysis using a pseudo-first-order approximation interprets the observed great dependence of JL on Re(JL alpha Ren', with n' usually greater than 1/3 for laminar flows) and on S1 (JL alpha S1m). It predicts also that the laminar-to-turbulent transition can be evidenced for interfacial enzymatic activity, ET greater than 2.10(-4) cm.S-1, as observed with most of the tubes prepared by covalent binding of peroxidase on the acrylamide gel wall. The experiment had to be carried out at a pH value of 8, which corresponds to the fastest rate of the chemiluminescent reaction. The predicted entrance effects were also observed experimentally for the first time in an immobilized enzyme system. This technique appears therefore to be a valuable tool for the quantitative analysis of diffusion-convection phenomena at a liquid-solid interface with a good spatial resolution with a great range of flow rate.  相似文献   

2.
The ability to mix aqueous liquids on microsecond time scales, while consuming minimal amounts of sample and maintaining UV-visible optical access to the mixing region, is highly desirable for a range of biophysical studies of fast protein and nucleic acid interactions and folding. We have constructed a laminar coaxial jet mixer that allows the measurement of UV-excited fluorescence from nanoliter and microliter quantities of material, mixed at microsecond rates. The mixer injects a narrow cylindrical stream (radius a < 1 microm) of fluorescent sample into a larger flow of diluting buffer that moves through a capillary (100 microm i.d.) at a speed approximately 20 cm/s, under laminar flow conditions (Re approximately equal to 14). Construction from a fused silica capillary allows the laser excitation (at 266 nm) and detection (at 350 nm) of tryptophan fluorescence at reasonably low working concentrations, without interference from background fluorescence. Using this mixer we have measured sub-millisecond fluorescence quenching kinetics while consuming fluorescent sample at rates no greater than 6 nl/s. Consumption of the diluting buffer is also very modest (approximately 1-3 microl/s) in comparison with other rapid mixer designs.  相似文献   

3.
This study is part of a FDA-sponsored project to evaluate the use and limitations of computational fluid dynamics (CFD) in assessing blood flow parameters related to medical device safety. In an interlaboratory study, fluid velocities and pressures were measured in a nozzle model to provide experimental validation for a companion round-robin CFD study. The simple benchmark nozzle model, which mimicked the flow fields in several medical devices, consisted of a gradual flow constriction, a narrow throat region, and a sudden expansion region where a fluid jet exited the center of the nozzle with recirculation zones near the model walls. Measurements of mean velocity and turbulent flow quantities were made in the benchmark device at three independent laboratories using particle image velocimetry (PIV). Flow measurements were performed over a range of nozzle throat Reynolds numbers (Re(throat)) from 500 to 6500, covering the laminar, transitional, and turbulent flow regimes. A standard operating procedure was developed for performing experiments under controlled temperature and flow conditions and for minimizing systematic errors during PIV image acquisition and processing. For laminar (Re(throat)=500) and turbulent flow conditions (Re(throat)≥3500), the velocities measured by the three laboratories were similar with an interlaboratory uncertainty of ~10% at most of the locations. However, for the transitional flow case (Re(throat)=2000), the uncertainty in the size and the velocity of the jet at the nozzle exit increased to ~60% and was very sensitive to the flow conditions. An error analysis showed that by minimizing the variability in the experimental parameters such as flow rate and fluid viscosity to less than 5% and by matching the inlet turbulence level between the laboratories, the uncertainties in the velocities of the transitional flow case could be reduced to ~15%. The experimental procedure and flow results from this interlaboratory study (available at http://fdacfd.nci.nih.gov) will be useful in validating CFD simulations of the benchmark nozzle model and in performing PIV studies on other medical device models.  相似文献   

4.
We studied gas exchange in anesthetized ducks and geese artificially ventilated at normal tidal volumes (VT) and respiratory frequencies (fR) with a Harvard respirator (control ventilation, CV) or at low VT-high fR using an oscillating pump across a bias flow with mean airway opening pressure regulated at 0 cmH2O (high-frequency ventilation, HFV). VT was normalized to anatomic plus instrument dead space (VT/VD) for analysis. Arterial PCO2 was maintained at or below CV levels by HFV with VT/VD less than 0.5 and fR = 9 and 12 s-1 but not at fR = 6 s-1. For 0.4 less than or equal to VT/VD less than or equal to 0.85 and 3 s-1. less than or equal to fR less than or equal to 12 s-1, increased VT/VD was twice as effective as increased fR at decreasing arterial PCO2, consistent with oscillatory dispersion in a branching network being an important gas transport mechanism in birds on HFV. Ventilation of proximal exchange units with fresh gas due to laminar flow is not the necessary mechanism supporting gas exchange in HFV, since exchange could be maintained with VT/VD less than 0.5. Interclavicular and posterior thoracic air sac ventilation measured by helium washout did not change as much as expired minute ventilation during HFV. PCO2 was equal in both air sacs during HFV. These results could be explained by alterations in aerodynamic valving and flow patterns with HFV. Ventilation-perfusion distributions measured by the multiple inert gas elimination technique show increased inhomogeneity with HFV. Elimination of soluble gases was also enhanced in HFV as reported for mammals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A computational analysis of confined nonimpinging jet flow in a blind tube is performed as an initial investigation of the underlying fluid and mass transport mechanics of tracheal gas insufflation. A two-dimensional axisymmetric model of a laminar steady jet flow into a concentric blind-end tube is put forth and the governing continuity, momentum, and convection-diffusion equations are solved with a finite element code. The effects of the jet diameter based Reynolds number (Re(j)), the ratio of the jet-to-outer tube diameters (epsilon), and the Schmidt number (Sc) are evaluated with the determined velocity and contaminant concentration fields. The normalized penetration depth of the jet is found to increase linearly with increasing Re(j) for epsilon = O(0.1). For a given epsilon, a ring vortex that develops is observed to be displaced downstream and radially outward from the jet tip for increasing Re(j). The axial shear stress profile along the inside wall of the outer tube possesses regions of fixed shear stress in addition to a local minimum and maximum in the vicinity of the jet tip. Corresponding regions of axial shear stress gradients exist between the fixed shear stress regions and the local extrema. Contaminant concentration gradients develop across the ring vortex indicating the inward diffusion of contaminant into the jet flow. For fixed epsilon and Sc and Re(j) approximately 900, normalized contaminant flow rate is observed to be approximately twice that of simple diffusion. This model predicts modest net axial contaminant transport enhancement due to convection-diffusion interaction in the region of the ring vortex.  相似文献   

6.
Moderate and severe arterial stenoses can produce highly disturbed flow regions with transitional and or turbulent flow characteristics. Neither laminar flow modeling nor standard two-equation models such as the kappa-epsilon turbulence ones are suitable for this kind of blood flow. In order to analyze the transitional or turbulent flow distal to an arterial stenosis, authors of this study have used the Wilcox low-Re turbulence model. Flow simulations were carried out on stenoses with 50, 75 and 86% reductions in cross-sectional area over a range of physiologically relevant Reynolds numbers. The results obtained with this low-Re turbulence model were compared with experimental measurements and with the results obtained by the standard kappa-epsilon model in terms of velocity profile, vortex length, wall shear stress, wall static pressure, and turbulence intensity. The comparisons show that results predicted by the low-Re model are in good agreement with the experimental measurements. This model accurately predicts the critical Reynolds number at which blood flow becomes transitional or turbulent distal an arterial stenosis. Most interestingly, over the Re range of laminar flow, the vortex length calculated with the low-Re model also closely matches the vortex length predicted by laminar flow modeling. In conclusion, the study strongly suggests that the proposed model is suitable for blood flow studies in certain areas of the arterial tree where both laminar and transitional/turbulent flows coexist.  相似文献   

7.
Oscillatory flow in the lung is studied using an order-of-magnitude analysis and flow visualization experiments in a single bifurcation with lung-like geometry. The results are used to obtain a classification scheme that identifies three major flow regimes, distinguished on the basis of whether the flow is dominated by unsteadiness, viscous effects, or the effects of convective acceleration. The unsteady regime is found to exist for values of a dimensionless stroke length (L/a, i.e., stroke volume/local cross-sectional area) less than or equal to 3 and for values of a dimensionless frequency (alpha 2 = alpha 2 omega/nu, where alpha is airway radius, omega the oscillatory frequency, and nu the kinematic viscosity) less than or equal to 10 in basic agreement with previous studies. The viscous regime is found when alpha 2(L/a)(a/R)1/2 less than 10 and alpha 2 less than 10 where R is the local radius of curvature in the bifurcation; the convective regime is found when alpha 2(L/a)(a/R)1/2 greater than 10 and L/a greater than 3. This same approach yields scaling laws for the magnitude of secondary flow velocities and shows that the ratio of secondary-to-axial velocity is small everywhere outside of the convective regime where it scales with (a/R)1/2. Comparison of these results to related simple flows shows that many of the features observed can be attributed to the effects of curvature, suggesting that the influence of the flow divider and of area change may be of lesser importance than previously thought.  相似文献   

8.
Urokinase (UK) has been immobilized to the inner surfaces of fibrocollagenous tubes (FCT) in an attempt to develop a fibrinolytic biomaterial which may be suitable for use as a small diameter vascular prosthesis. The enzyme was bound by adsorption followed by glutaraldehyde crosslinking. An in virto kinetic study of immobilized urokinase was conducted by employing the tubular material as a flow through reactor operated in a batch recycle mode in which the esterolysis of the model substrate, N-alpha-acetyl-L-lysine methyl ester (ALME), was monitored as a function of substrate concentration, recycle flow rate, and temperature. Results were compared with data from the soluble enzyme reaction, which was conducted in the presence and absence of 10% swine skin gelatin, in order to identify the specific effects of a collagenous microenvironment. Observed rates for the UK-FCT catalyzed reaction were observed to be dependent on recycle flow rates below 12 mL/min (Re = 107). Apparent Michaelis-Menten rate parameters were determined by a nonlinear search technique for two flow rates: one above the critical point for external diffusion effects (Re = 282) and one within the mass-transfer-limited region (Re = 71). When the latter data were corrected for external diffusion by applying the Graetz correlation for laminar flow in tubes to estimate themass transfer coefficient, the corrected K(m) of 6.45 +/- 0.38 mM agreed very closely with the diffusion free parameter (i.e. 6.13 +/- 0.63). Furthermore, this value was observed to be an order of magnitude higher than that of the soluble enzyme but approximately equal to the K(m) of the soluble enzyme in a 10% gelatin environment (8.13 +/- 1.53 mM). It is postulated that the difference in kinetic parameters between soluble and collagen immobilized UK is due to an inherent interaction between collagen and enzyme rather than to mass transfer effects. Such aninteraction is supported by the effects of collagen on thermal stability and energy of activation.  相似文献   

9.
Squids encounter vastly different flow regimes throughout ontogeny as they undergo critical morphological changes to their two locomotive systems: the fins and jet. Squid hatchlings (paralarvae) operate at low and intermediate Reynolds numbers (Re) and typically have rounded bodies, small fins, and relatively large funnel apertures, whereas juveniles and adults operate at higher Re and generally have more streamlined bodies, larger fins, and relatively small funnel apertures. These morphological changes and varying flow conditions affect swimming performance in squids. To determine how swimming dynamics and propulsive efficiency change throughout ontogeny, digital particle image velocimetry (DPIV) and kinematic data were collected from an ontogenetic range of long-finned squid Doryteuthis pealeii and brief squid Lolliguncula brevis swimming in a holding chamber or water tunnel (Re = 20-20 000). Jet and fin wake bulk properties were quantified, and propulsive efficiency was computed based on measurements of impulse and excess kinetic energy in the wakes. Paralarvae relied predominantly on a vertically directed, high frequency, low velocity jet as they bobbed up and down in the water column. Although some spherical vortex rings were observed, most paralarval jets consisted of an elongated vortical region of variable length with no clear pinch-off of a vortex ring from the trailing tail component. Compared with paralarvae, juvenile and adult squid exhibited a more diverse range of swimming strategies, involving greater overall locomotive fin reliance and multiple fin and jet wake modes with better defined vortex rings. Despite greater locomotive flexibility, jet propulsive efficiency of juveniles/adults was significantly lower than that of paralarvae, even when juvenile/adults employed their highest efficiency jet mode involving the production of periodic isolated vortex rings with each jet pulse. When the fins were considered together with the jet for several juvenile/adult swimming sequences, overall propulsive efficiency increased, suggesting that fin contributions are important and should not be overlooked in analyses of the swimming performance of squids. The fins produced significant thrust and consistently had higher propulsive efficiency than did the jet. One particularly important area of future study is the determination of coordinated jet/fin wake modes that have the greatest impact on propulsive efficiency. Although such research would be technically challenging, requiring new, powerful, 3D approaches, it is necessary for a more comprehensive assessment of propulsive efficiency of the squid dual-mode locomotive system.  相似文献   

10.
The effect of Reynolds number on the propulsive efficiency of pulsed-jet propulsion was studied experimentally on a self-propelled, pulsed-jet underwater vehicle, dubbed Robosquid due to the similarity of its propulsion system with squid. Robosquid was tested for jet slug length-to-diameter ratios (L/D) in the range 2-6 and dimensionless frequency (St(L)) in the range 0.2-0.6 in a glycerin-water mixture. Digital particle image velocimetry was used for measuring the impulse and energy of jet pulses from the velocity and vorticity fields of the jet flow to calculate the pulsed-jet propulsive efficiency, and compare it with an equivalent steady jet system. Robosquid's Reynolds number (Re) based on average vehicle velocity and vehicle diameter ranged between 37 and 60. The current results for propulsive efficiency were compared to the previously published results in water where Re ranged between 1300 and 2700. The results showed that the average propulsive efficiency decreased by 26% as the average Re decreased from 2000 to 50 while the ratio of pulsed-jet to steady jet efficiency (η(P)/η(P, ss)) increased up to 0.15 (26%) as the Re decreased over the same range and for similar pulsing conditions. The improved η(P)/η(P, ss) at lower Re suggests that pulsed-jet propulsion can be used as an efficient propulsion system for millimeter-scale propulsion applications. The Re = 37-60 conditions in the present investigation, showed a reduced dependence of η(P) and η(P)/η(P, ss)on L/D compared to higher Re results. This may be due to the lack of clearly observed vortex ring pinch-off as L/D increased for this Re regime.  相似文献   

11.
3D-PTV is a quantitative flow measurement technique that aims to track the Lagrangian paths of a set of particles in three dimensions using stereoscopic recording of image sequences. The basic components, features, constraints and optimization tips of a 3D-PTV topology consisting of a high-speed camera with a four-view splitter are described and discussed in this article. The technique is applied to the intermediate flow field (5 <x/d <25) of a circular jet at Re ≈ 7,000. Lagrangian flow features and turbulence quantities in an Eulerian frame are estimated around ten diameters downstream of the jet origin and at various radial distances from the jet core. Lagrangian properties include trajectory, velocity and acceleration of selected particles as well as curvature of the flow path, which are obtained from the Frenet-Serret equation. Estimation of the 3D velocity and turbulence fields around the jet core axis at a cross-plane located at ten diameters downstream of the jet is compared with literature, and the power spectrum of the large-scale streamwise velocity motions is obtained at various radial distances from the jet core.  相似文献   

12.
D Liepsch  M Singh  M Lee 《Biorheology》1992,29(4):419-431
We studied the flow behavior under steady flow conditions in four models of cylindrical stenoses at Reynolds numbers from 150 to 920. The flow upstream of the constrictions was always fully developed. The constriction ratios of the rigid tubes (D) to the stenoses (d) were d/D = 0.273; 0.505; 0.548; 0.786. The pressure drop at various locations in the stenotic models was measured with water manometers. The flow was visualized with a photoelasticity apparatus using an aqueous birefringent solution. We also studied the flow behavior at pulsatile flow in a dog aorta with a constriction of 71%. The flow through stenotic geometries depends on the Reynolds number of the flow generated in the tube and the constriction ratio d/D. At low d/D ratios, (with the increased constriction), the flow separation zones (recirculation zones, so-called reattachment length) and flow disturbances increased with larger Reynolds numbers. At lower values, eddies were generated. At high Re, eddies were observed in the pre-stenotic regions. The pressure drop is a function of the length and internal diameter of the stenosis, respective ratio of stenosis to the main vessel and the Reynolds numbers. At low Re-numbers and low d/D, distinct recirculation zones were found close to the stenosis. The flow is laminar in the distal areas. Further experiments under steady and unsteady flow conditions in a dog aorta model with a constriction of 71% showed similar effects. High velocity fluctuations downstream of the stenosis were found in the dog aorta. A videotape demonstrates these results.  相似文献   

13.
Boyle JD  Lappin-Scott H 《Biofouling》2007,23(3-4):139-150
The effect of flowrate and Reynolds Number, Re, on the spatial distribution of individual Pseudomonas aeruginosa cells during their initial attachment to glass flowcells was observed in a series of time-lapse images obtained over a 56-h period. It was shown that flow affected the distribution at Re > 245. Under laminar flow conditions, Re = 96, the distribution of bacterial cells in 200 sub-areas was accurately predicted by using the Poisson distribution and was not dependent on the orientation or shape of the sub-areas. Under turbulent flow conditions, Re = 2220, cells initially attached in streaks along the line of flow. As bacterial cells accumulated on the surface, the streaks broadened and the distribution became more uniform. Analyses showed that, initially, flow had an effect on cell distribution in the flowcell with Re = 245, with significantly greater effects at higher Re. As the cell surface densities increased, the effect of flow direction on cell distribution decreased. It is concluded that the visco-elastic properties of the extracellular polymeric substances (EPS) in which the cells are embedded, significantly affect the distribution of attaching cells.  相似文献   

14.
OBJECTIVE: To determine the safest, least costly, and most effective way to select patients with symptomatic carotid ischaemic events for carotid angiography before carotid endarterectomy. DESIGN: Prospective cohort study. SETTING: University departments of clinical neurosciences and clinical neurology. PATIENTS: 485 Patients with carotid territory transient ischaemic attacks of the brain (n = 224) or eye (n = 162) or retinal infarction (n = 99) were referred to a single neurologist between 1976 and 1986. INTERVENTIONS: Clinical examination by auscultation over the precordium, supraclavicular fossae, and neck vessels (all patients). Cerebral angiography of patients suitable for carotid endarterectomy. MAIN OUTCOME MEASURES: Financial cost and number of disabling strokes after angiography. RESULTS: 296 Patients were investigated by cerebral angiography. Ischaemic symptoms had occurred in the distribution of 298 internal carotid arteries (symptomatic) that were imaged, two patients having bilateral symptoms. The presence or absence of a carotid bruit and the maximum percentage diameter stenosis of the origin of the symptomatic internal carotid artery were correlated. The prevalence of mild disease (diameter stenosis greater than or equal to 25%) of the symptomatic internal carotid artery was 57%, and if an ipsilateral carotid bruit was heard the probability of mild stenosis rose to 92%. The prevalence of moderate disease of the symptomatic internal carotid artery (stenosis greater than or equal to 50%) was 39%, and if a bruit was heard the probability doubled to 78%. The prevalence of severe internal carotid disease (stenosis greater than or equal to 75%) was 22%, and if a bruit was heard the probability was more than double, at 49%. The direct cost to both the NHS and the private health sector of investigating patients with symptomatic carotid ischaemia was estimated for several strategies of carotid artery imaging and expressed in terms of financial cost and number of strokes after angiography incurred in detecting all patients with diameter stenosis of the symptomatic internal carotid artery of greater than or equal to 25%, 50%, or 75%. To detect diameter stenosis of the internal carotid artery of greater than or equal to 25% it is most cost effective to proceed directly to cerebral angiography in patients with a carotid bruit over the symptomatic carotid bifurcation and to screen patients without a carotid bruit by duplex carotid ultrasonography; patients in whom duplex ultrasonography discloses stenosis of greater than or equal to 25% are then referred for cerebral angiography. To detect only more severe internal carotid disease (stenosis of greater than or equal to 50%) the same policy applies, unless the local duplex ultrasonographic service is particularly efficient and reliable, when it is probably most cost effective and safer to screen all patients by this method irrespective of the findings on cervical auscultation. To detect stenosis of 75% or greater it is most cost effective to screen all patients with duplex ultrasonography, whether a carotid bruit is present or not, because this approach reduces the number of angiograms required, is the least expensive, and results in the least number of strokes after angiography. CONCLUSIONS: Patients selection for cerebral angiography before carotid endarterectomy needs to be appropriate and cost effective. Sound clinical evaluation and duplex carotid ultrasound are required. The findings of this study should not be applied to other medical centres without first considering possible differences in the prevalence of carotid artery disease, the efficiency and reliability of duplex ultrasonography, the local complication rates of cerebral angiography, and the local costs of the imaging procedures.  相似文献   

15.
The inspiratory flow characteristics in a three-generation lung airway have been numerically investigated using a control volume method to solve the fully three-dimensional laminar Navier-Stokes equations. The three-generation airway is extracted from the fifth to seventh branches of the model of Weibel (Morphometry of the Human Lung, Academic Press, New York, Springer, Berlin, 1963) with in-plane and 90 degrees off-plane configurations. Computations are carried out in the Reynolds number range of 200-1600, corresponding to mouth-air breathing rates ranging from 0.27 to 2.16l/s, or an averaged height of a man breathing from quiet to vigorous state. Particular attention is paid to establishing relations between the Reynolds number and the overall flow characteristics, including flow patterns and pressure drop. The ratio of airflow rate through the medial branch to that of the lateral branch for an in-plane airway increases as Re(0.227). However, the total pressure drop coefficient varies as Re(-0.497) for an in-plane airway and as Re(-0.464) for an off-plane airway. These pressure drop results are in good agreement with the experimentally measured behavior of Re(-0.5) and are more accurate than the numerically determined behavior of Re(-0.61) assuming the airways to be approximated by two-dimensional channels.  相似文献   

16.
The effect of changing segment pressure (Ps) and airway opening pressure (Pao) on flow through a collaterally ventilating lung segment was evaluated in intact and excised dog lungs. He, N2, and SF6 were passed through the lung segment distal to a catheter wedged in a peripheral airway at driving pressures (Ps - Pao) between 0.25 and 2 cm H2O. Eight excised caudal lobes were studied at Pao = 5, 10, and 15 cm H2O. Flow was directly related to Ps - Pao and Pao and inversely related to the density of the gas. A dimensionless plot of the driving pressure normalized to a reference dynamic pressure as a function of Reynolds number (Re) indicated that flow through the segment behaved as if it were laminar at Re less than 100 and that increasing Pao increased the dimension of the pathways conducting flow as shown previously. Small changes in Ps had no effect on pathway geometry or on the pattern of flow through the segment at Pao = 10 and 15 cmH2O. At Pao = 5 cm H2O increasing segment pressure appeared to increase the dimensions of the flow pathways slightly. Similar changes in Ps - Pao had no consistent effect on flow pattern or pathway geometry in six anesthetized, paralyzed, vagotomized dogs at functional residual capacity or after widely opening the chest (Pao = 5 cm H2O). These results suggest that, at large lobe volumes, airways (including collateral pathways) are maximally dilated and therefore relatively insensitive to small changes in segment pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A single dose of 8 or 16 mg of PGF2 alpha per 58 kg body weight was injected intramuscular into intact, ovariectomized or hysterectomized 90-100 day pregnant sheep in three separate experiments. Both doses of PGF2 alpha decreased the weights of the corpora lutea (P less than or equal to 0.05) and the concentration of progesterone in ovarian venous plasma at 72 hr (P less than or equal to 0.05) compared to the 0 hr sample within treatment groups and to control ewes at 72 hr in intact and hysterectomized pregnant ewes. In hysterectomized pregnant ewes, progesterone in jugular plasma declined (P less than or equal to 0.05) from 0 to 72 hr but never fell below 4 mg/ml and this decrease in progesterone after 8 or 16 mg PGF2 alpha was greater than in control hysterectomized ewes (P less than or equal to 0.05). There was a significant decrease in progesterone over time in jugular or uterine venous plasma in the presence of absence of the ovaries in 90-100 day pregnant ewes (P less than or equal to 0.05) but the profiles of progesterone were not different between vehicle and PGF2 alpha-treated ewes (P greater than or equal to 0.05). Uterine venous progesterone never declined below 30 ng/ml in the presence or absence of the ovaries and there was a significant quadratic increase (P less than or equal to 0.05) in uterine venous progesterone toward the end of the 72 hr sampling period indicating an increase in steroidogenic activity of the placenta. PGF2 alpha did not affect the number of abortions in intact or ovariectomized pregnant ewes (P greater than 0.05). Thus, the corpus luteum of sheep at 90-100 days of pregnancy is functional and responsive to PGF2 alpha, placentomes are functional but do not appear to be responsive to the doses of PGF2 alpha tested and PGF2 alpha was not an abortifacient over the 72 hr treatment period.  相似文献   

18.
The interactions of H1 (H1A, H1B), H2A, H2B, H3, H4, and H5 with phenyl cross-linked agarose were studied. Procedures are described whereby all six histones can be bound, released, and fractionated by using appropriate salt concentrations or pH. The binding can be totally abolished by inclusion of hydrophobic disrupting agents. Control experiments with nonderivated cross-linked agarose ruled out a passive aggregation-disaggregation phenomenon governing the binding patterns. The absorption sequence based on the identification and quantitation of individual histones from either unfractionated (whole) histone or separate histone classes is as follows: H3 greater than or equal to H4 greater than H2B greater than or equal to H5 greater than or equal to H2A greater than H1A greater than or equal to H1B. The order differs only slightly from the reverse of the desorption sequence, H1B less than or equal to H1A less than or equal to H5 less than H2A less than or equal to H3. Preferential interaction of H2A-H2B, H3-H4, and H2A-H2B-H4 occur; these interactions can modify the original relative affinity of each individual component for the matrix. The variability in matrix affinity appears to involve simple stoichiometry of the histone components.  相似文献   

19.
The influence of flow characteristics and gas physical properties on nasal resistance (NR) is difficult to ascertain with traditional rhinomanometric methods because the respiratory airflows used in these methods are largely uncontrolled. As an alternative, we used a novel method of rhinomanometry in which an externally generated flow is passed through the nasal passage via a mouthpiece. The transnasal pressure-flow relationships for both quasi-steady and oscillating flows and with different gases were obtained in five healthy adults with this method. For quasi-steady nasal flows the dimensionless pressure losses were largely independent of physical properties of the gas and a function of the Reynolds number (Re) of the flow. Values of NR for quasi-steady flows were largely independent of flow direction for Re up to roughly 3,000 in all five subjects and for Re up to roughly 19,000 in two of the five subjects. Airway collapse occurred in two subjects at Re greater than 3,000, suggesting that the nonrigid segments of the nasal passage contribute to the intersubject variations in NR at high flow rates. Pressure losses associated with oscillating flows measured at frequencies between 1 and 16 Hz were similar to steady flow losses provided that Re was less than roughly 3,000. For Re greater than 3,000 the oscillating flow resistances were affected by the phasic redistribution of flow into compliant segments of the nasal passage. These results indicate that, for flow rates and harmonic frequencies associated with breathing at rest, the nasal passage behaves as a rigid rough-walled pipe in which pressure losses are largely determined by forces relating to viscous friction and convective accelerations.  相似文献   

20.
The process by which a protein folds into its native conformation is highly relevant to biology and human health yet still poorly understood. One reason for this is that folding takes place over a wide range of timescales, from nanoseconds to seconds or longer, depending on the protein1. Conventional stopped-flow mixers have allowed measurement of folding kinetics starting at about 1 ms. We have recently developed a microfluidic mixer that dilutes denaturant ~100-fold in ~8 μs2. Unlike a stopped-flow mixer, this mixer operates in the laminar flow regime in which turbulence does not occur. The absence of turbulence allows precise numeric simulation of all flows within the mixer with excellent agreement to experiment3-4.Laminar flow is achieved for Reynolds numbers Re ≤100. For aqueous solutions, this requires micron scale geometries. We use a hard substrate, such as silicon or fused silica, to make channels 5-10 μm wide and 10 μm deep (See Figure 1). The smallest dimensions, at the entrance to the mixing region, are on the order of 1 μm in size. The chip is sealed with a thin glass or fused silica coverslip for optical access. Typical total linear flow rates are ~1 m/s, yielding Re~10, but the protein consumption is only ~0.5 nL/s or 1.8 μL/hr. Protein concentration depends on the detection method: For tryptophan fluorescence the typical concentration is 100 μM (for 1 Trp/protein) and for FRET the typical concentration is ~100 nM.The folding process is initiated by rapid dilution of denaturant from 6 M to 0.06 M guanidine hydrochloride. The protein in high denaturant flows down a central channel and is met on either side at the mixing region by buffer without denaturant moving ~100 times faster (see Figure 2). This geometry causes rapid constriction of the protein flow into a narrow jet ~100 nm wide. Diffusion of the light denaturant molecules is very rapid, while diffusion of the heavy protein molecules is much slower, diffusing less than 1 μm in 1 ms. The difference in diffusion constant of the denaturant and the protein results in rapid dilution of the denaturant from the protein stream, reducing the effective concentration of the denaturant around the protein. The protein jet flows at a constant rate down the observation channel and fluorescence of the protein during folding can be observed using a scanning confocal microscope5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号