首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Neural stem cells are self-renewing cells capable of differentiating into all neural lineage cells in vivo and in vitro. In the present study, coordinated induction of midbrain dopaminergic phenotypes in an immortalized multipotent neural stem cell line can be achieved by both overexpression of nuclear receptor Nurr1, and fibroblast growth factor-8 (FGF-8), and sonic hedgehog (Shh) signals. Nurr1 overexpression induces neuronal differentiation and confers competence to respond to extrinsic signals such as Shh and FGF-8 that induce dopaminergic fate in a mouse neural stem cell line. Our findings suggest that immortalized NSCs can serve as an excellent model for understanding mechanisms that regulate specification of ventral midbrain DA neurons and as an unlimited source of DA progenitors for treating Parkinson disease patients by cell replacement.  相似文献   

3.
4.
Park CH  Kang JS  Yoon EH  Shim JW  Suh-Kim H  Lee SH 《FEBS letters》2008,582(5):537-542
Roles of Nurr1 and neurogenin 2 (Ngn2) have been shown in midbrain dopamine (DA) neuron development. We present here rat and mouse species-dependent differences of Nurr1 and Ngn2 actions in DA neuron differentiation. Nurr1 exogene expression caused an efficient generation of tyrosine hydroxylase (TH)-positive DA cells from rat neural precursor cells (NPCs). Nurr1-induced TH+ cell yields were low and highly variable depending on the origins of NPCs in mouse cultures. Coexpression of Ngn2 repressed Nurr1-induced generation of TH+ cells in rat cultures. In clear contrast, a robust enhancement in Nurr1-induced DA cell yields was observed in mouse NPCs by Ngn2. These findings imply that DA neurons may develop differently in the midbrains of these two species.  相似文献   

5.
Poly-ubiquitin chains targeting proteins for 26S proteasomal degradation are classically anchored on internal lysines of substrates via iso-peptide linkages. However recently, linkage of ubiquitin moieties to non-canonical nucleophilic residues, such as cysteines, serines and threonines, has been demonstrated in a small number of cases.Non-canonical ubiquitylation of the proneural protein Ngn2 has previously been seen in Xenopus egg extract, but it was not clear whether such highly unusual modes of ubiquitylation were restricted to the environment of egg cytoplasm. Here we show that Ngn2 is, indeed, ubiquitylated on non-canonical sites in extracts from neurula stage Xenopus embryos, when Ngn2 is usually active. Moreover, in the P19 mammalian embryonal carcinoma cell line capable of differentiating into neurons, xNgn2 is ubiquitylated on both canonical and non-canonical sites. We see that mutation of cysteines alone results stabilisation of the protein in P19 cells, indicating that non-canonical ubiquitylation on these residues normally contributes to the fast turnover of xNgn2 in mammalian cells.  相似文献   

6.
7.
Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients.  相似文献   

8.
Otx2 is expressed in each step and site of head development. To dissect each Otx2 function we have identified a series of Otx2 enhancers. The Otx2 expression in the anterior neuroectoderm is regulated by the AN enhancer and the subsequent expression in forebrain and midbrain later than E8.5 by FM1 and FM2 enhancers; the Otx1 expression takes place at E8.0. In telencephalon later than E9.5 Otx1 continues to be expressed in the entire pallium, while the Otx2 expression is confined to the most medial pallium. To determine the Otx functions in forebrain and midbrain development we have generated mouse mutants that lack both FM1 and FM2 enhancers (DKO: Otx2ΔFM1ΔFM2/ΔFM1ΔFM2) and examined the TKO (Otx1/Otx2ΔFM1ΔFM2/ΔFM1ΔFM2) phenotype. The mutants develop normally until E8.0, but subsequently by E9.5 the diencephalon, including thalamic eminence and prethalamus, and the mesencephalon are caudalized into metencephalon consisting of isthmus and rhombomere 1; the caudalization does not extend to rhombomere 2 and more caudal rhombomeres. In rostral forebrain, neopallium, ganglionic eminences and hypothalamus in front of prethalamus develop; we propose that they become insensitive to the caudalization with the switch from the Otx2 expression under the AN enhancer to that under FM1 and FM2 enhancers. In contrast, the medial pallium requires Otx1 and Otx2 for its development later than E9.5, and the Otx2 expression in diencepalon and mesencephalon later than E9.5 is also directed by an enhancer other than FM1 and FM2 enhancers.  相似文献   

9.
10.
11.
12.
Neural crest-derived structures that depend critically upon expression of the basic helix-loop-helix DNA binding protein Hand2 for normal development include craniofacial cartilage and bone, the outflow tract of the heart, cardiac cushion, and noradrenergic sympathetic ganglion neurons. Loss of Hand2 is embryonic lethal by E9.5, obviating a genetic analysis of its in-vivo function. We have overcome this difficulty by specific deletion of Hand2 in neural crest-derived cells by crossing our line of floxed Hand2 mice with Wnt1-Cre transgenic mice. Our analysis of Hand2 knock-out in neural crest-derived cells reveals effects on development in all neural crest-derived structures where Hand2 is expressed. In the autonomic nervous system, conditional disruption of Hand2 results in a significant and progressive loss of neurons as well as a significant loss of TH expression. Hand2 affects generation of the neural precursor pool of cells by affecting both the proliferative capacity of the progenitors as well as affecting expression of Phox2a and Gata3, DNA binding proteins important for the cell autonomous development of noradrenergic neurons. Our data suggest that Hand2 is a multifunctional DNA binding protein affecting differentiation and cell type-specific gene expression in neural crest-derived noradrenergic sympathetic ganglion neurons. Hand2 has a pivotal function in a non-linear cross-regulatory network of DNA binding proteins that affect cell autonomous control of differentiation and cell type-specific gene expression.  相似文献   

13.
Ma W  Yan RT  Xie W  Wang SZ 《Developmental biology》2004,265(2):320-328
The molecular mechanism of retinal ganglion cell (RGC) genesis and development is not well understood. Published data suggest that the process may involve two bHLH genes, ath5 and NSCL1. Gain-of-function studies show that ath5 increases RGC production in the developing retina. We examined whether two chick genes, cath5 and cNSCL1, can guide retinal pigment epithelial (RPE) cells to transdifferentiate toward RGCs. Ectopic expression of cath5 and cNSCL1 in cultured chick RPE cells was achieved through retroviral transduction. cath5 alone was unable to induce de novo expression of early RGC markers, such as RA4 antigen, neurofilament (160 kDa), and a neurofilament-associated antigen. However, cath5 induced the expression of these proteins when the RPE cells were cultured with medium supplemented with bFGF. Since bFGF alone can induce only RA4 antigen, the expression of the additional RGC markers reflects a synergism between cath5 and bFGF in promoting RPE transdifferentiation toward RGCs. Morphologically, the RA4(+) cells in bFGF + cath5 cultures appeared more neuron-like than those generated by bFGF alone. cNSCL1 also promoted bFGF-stimulated RPE cells to transdifferentiate toward RGCs that expressed RA4 antigen, N-CAM, Islet-1, neurofilament, and neurofilament-associated antigen. We found that cath5 induced cNSCL1 expression, but not vice versa. Our data suggest that cath5 or cNSCL1 alone was insufficient to induce RPE transdifferentiation into RGCs, but could further neural differentiation initiated by bFGF. We propose that intrinsic factors act synergistically with extrinsic factors during RGC genesis and development.  相似文献   

14.
In the present study, we aim to elucidate the role of caveolin-1 in modulating astroglial differentiation of neural progenitor cells (NPCs) and the potential mechanisms involved. We first investigated astroglial differentiation and Notch signaling by detecting the expressions of S100β, GFAP, NICD and hairy enhancer of split 1 (Hes1) in the brains of wild-type and caveolin-1 knockout mice. Caveolin-1 knockout mice revealed remarkably less astroglial differentiation and lower levels of NICD and Hes1 expressions than wild type mice. We then studied the potential roles of caveolin-1 in modulating NICD and Hes1 expressions and astroglial differentiation in isolated cultured NPCs by using caveolin-1 peptide and caveolin-1 RNA silencing. In the differentiating NPCs, caveolin-1 peptide markedly promoted astroglial formation and up-regulated the expressions of NICD and Hes1. In contrast, the knockdown of caveolin-1 inhibited astroglial differentiation of NPCs and the expressions of NICD and Hes1. Taken together, these results provide strong evidence that caveolin-1 can promote astroglial differentiation of NPCs through modulating Notch1/NICD and Hes1 expressions.  相似文献   

15.
16.
17.
18.
Cerebellar granule cells (CGCs) are the most abundant neuronal type in the mammalian brain, and their differentiation is regulated by the basic helix-loop-helix gene, Math1. However, little is known about downstream genes of Math1 and their functions in the cerebellum. To investigate them, we have here established an electroporation-based in vivo gene transfer method in the developing mouse cerebellum. Misexpression of Math1 ectopically induced expression of Bar-class homeobox genes, Mbh1 and Mbh2, which are expressed by CGCs. Conversely, their expression was repressed in CGCs by knockdown of Math1. These findings, taken together with chromatin immunoprecipitation assays, suggest that Math1 directly regulates the Mbh genes in CGCs. Furthermore, a dominant-negative form of the Mbh proteins disrupted proper formation of the external granule layer and differentiation of CGCs, whereas misexpression of the Mbh genes ectopically induced expression of a CGC marker in nonneuronal cells, indicating that the Mbh proteins are required for the differentiation of CGCs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号