首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nine temperature-sensitive (ts) mutants of herpes simplex virus type 1 selected for their inability to render cells susceptible to immune cytolysis after infection at the nonpermissive temperature have been characterized genetically and phenotypically. The mutations in four mutants were mapped physically by marker rescue and assigned to functional groups by complementation analysis. In an effort to determine the molecular basis for cytolysis resistance, cells infected with each of the nine mutants were monitored for the synthesis of viral glycoprotein in total cell extracts and for the presence of these glycoproteins in plasma membranes. The four mutants whose ts mutations were mapped were selected with polypeptide-specific antiserum to glycoproteins gA and gB; however, three of the four mutations mapped to DNA sequences outside the limits of the structural gene specifying these glycoproteins. Combined complementation and phenotypic analysis indicates that the fourth mutation also lies elsewhere. The ts mutations in five additional cytolysis-resistant mutants could not be rescued with single cloned DNA fragments representing the entire herpes simplex virus type 1 genome, suggesting that these mutants may possess multiple mutations. Complementation tests with the four mutants whose ts lesions had been mapped physically demonstrated that each represents a new viral gene. Examination of mutant-infected cells at the nonpermissive temperature for the presence of viral glycoproteins in total cell extracts and in membranes at the cell surface demonstrated that (i) none of the five major viral glycoproteins was detected in extracts of cells infected with one mutant, suggesting that this mutant is defective in a very early function; (ii) cells infected with six of the nine mutants exhibited greatly reduced levels of all the major viral glycoproteins at the infected cell surface, indicating that these mutants possess defects in the synthesis or processing of viral glycoproteins; and (iii) in cells infected with one mutant, all viral glycoproteins were precipitable at the surface of the infected cell, despite the resistance of these cells to cytolysis. This mutant is most likely mutated in a gene affecting a late stage in glycoprotein processing, leading to altered presentation of glycoproteins at the plasma membrane. The finding that the synthesis of both gB and gC was affected coordinately in cells infected with six of the nine mutants suggests that synthesis of these two glycoproteins, their transport to the cell surface, or their insertion into plasma membranes is coordinately regulated.  相似文献   

2.
The relative antigenicity of the individual herpes simplex virus type 1 (KOS) glycoproteins gC and gB was analyzed in BALB/c mice by using KOS mutants altered in their ability to present these antigens on cell surface membranes during infection. The mutants employed were as follows: syn LD70 , a non-temperature-sensitive mutant defective in the synthesis of cell surface membrane gC; tsF13 , a temperature-sensitive mutant defective in the processing of the precursor form of gB to the mature cell surface form at 39 degrees C; and ts606 , an immediate early temperature-sensitive mutant defective in the production of all early and late proteins including the glycoproteins. By comparing the relative susceptibility to immunolysis of mouse 3T3 cells infected at 39 degrees C with wild-type virus, presenting the full complement of the glycoprotein antigens, gC, gB, and gD, with target cells infected with mutants presenting only subsets of these antigens, we determined that a major portion of cytolytic antibody contained in hyperimmune anti-herpes simplex virus type 1 (KOS) mouse antiserum was directed against glycoproteins gC and gB. The relative immunogenicity of wild-type and mutant virus-infected cells also was compared in BALB/c mice. Immunogen lacking the mature form of gB induced a cytolytic antibody titer comparable to that of the wild-type virus, whereas that lacking the mature form of gC showed a 70% reduction in titer. The absence of the mature cell surface forms of gB and gC in immunogen preparations resulted in a 4- to 15-fold reduction in in virus neutralizing titer. Animals immunized with ts606 -infected cells (39 degrees C) induced relatively little virus-specific cytolytic and neutralizing antibody. Analysis of the glycoprotein specificities of these antisera by radioimmunoprecipitation showed that the antigens immunoprecipitated reflected the viral plasma membrane glycoprotein profiles of the immunogens. The absence of the mature forms of gC or gB in the immunizing preparation did not appreciably affect the immunoprecipitating antibody response to other antigens. Mice immunized with wild-type and mutant virus-infected cells were tested for their resistance to intracranial and intraperitoneal challenge with the highly virulent WAL strain of herpes simplex virus type 1. Despite the observed alterations in serum virus-specific antibody induced with the individual immunogens, all animals survived an intraperitoneal challenge of 10 50% lethal doses. However, differences in the survival of animals were obtained upon intracranial challenge.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The endoglycosidase endo-beta-N-acetylglucominidase H (endo H) was used to examine the nature of the oligosaccharides associated with the herpes simplex virus type 1 glycoproteins gA, gB, and gC. Immunoprecipitates from detergent extracts of infected cells, using monospecific antisera to gAB and gC, were treated with endo H. The low-molecular-weight precursor to gC, pgC(105), was found to be sensitive to endo H. Removal of the endo H-sensitive oligosaccharide chains from pgC(105) resulted in a protein with an apparent molecular weight of 75,000. In contrast, the fully glycosylated gC was not sensitive to endo H treatment. These results suggested that the oligosaccharide chains of pgC(105) were primarily of the simple high-mannose type. Both gA and gB were sensitive to endo H treatment; however, gB appeared to be only partially susceptible, whereas [3H]mannose-labeled gA was not detectable after endo H treatment. These results that gB contained both complex- and simple-type oligosaccharides, and gA contained only simple-type oligosaccharides. An accumulation of the high-mannose glycoproteins pgC(105) and gA was observed in monensin-treated infected cells with a concomitant inhibition of gB and gC. Glycoproteins gA and pgC(105) synthesized in the presence of monensin were also sensitive to endo H treatment.  相似文献   

4.
Utilizing a combination of preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and sodium dodecyl sulfate-hydroxylapatite column chromatography, we have separated and purified the gA and gB glycoproteins of the major virus-specific glycoprotein region from herpes simplex virus type 1-infected cells. By using purified antigen preparations, antisera specific to each of these glycoproteins were produced. Immunoprecipitation from detergent extracts of infected cells and radioimmune precipitation of the purified antigens have shown that the anti-gA and anti-gB sera each recognize both the gA and the gB glycoproteins. The anti-gA serum was also shown to neutralize virus despite the presence of only minute quantities of the gA glycoprotein in virions. Pulse-chase studies have indicated that the gA and gB glycoproteins are synthesized from a common precursor polypeptide. Together, these data demonstrate that the gA and gB glycoproteins of herpes simplex virus type 1 are antigenically similar but not identical and probably represent two different forms of the same polypeptide which differ in their degree of glycosylation.  相似文献   

5.
BHK-21 cells infected with temperature-sensitive mutants of herpes simplex virus type 1 strain KOS representing 16 complementation groups were tested for susceptibility to complement-mediated immune cytolysis at permissive (34 degrees C) and nonpermissive (39 degrees C) temperatures. Only cells infected by mutants in complementation group E were resistant to immune cytolysis in a temperature-sensitive manner compared with wild-type infections. The expression of group E mutant cell surface antigens during infections at 34 and 39 degrees C was characterized by a combination of cell surface radioiodination, specific immunoprecipitation, and gel electrophoretic analysis of immunoprecipitates. Resistance to immune lysis at 39 degrees C correlated with the absence of viral antigens exposed at the cell surface. Intrinsic radiolabeling of group E mutant infections with [14C]glucosamine revealed that normal glycoproteins were produced at 34 degrees C but none were synthesized at 39 degrees C. The effect of 2-deoxy-D-glucose on glycosylation of group E mutants at 39 degrees C suggested that the viral glycoprotein precursors were not synthesized. The complementation group E mutants failed to complement herpes simplex virus type 1 mutants isolated by other workers. These included the group B mutants of strain KOS, the temperature-sensitive group D mutants of strain 17, and the LB2 mutant of strain HFEM. These mutants should be considered members of herpes simplex virus type 1 complementation group 1.2, in keeping with the new herpes simplex virus type 1 nomenclature.  相似文献   

6.
The major glycoprotein complex (VP123) of herpes simplex virus type 1 resolved by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis was purified and further fractionated into two major and two minor components by chromatography of the isolated VP123 region on SDS-hydroxylapatite columns. The two major components (gC and gA/gB) were purified free of other polypeptides and used to prepare specific antisera to these glycoproteins. Radioimmune precipitation demonstrated that these antisera were specific for the antigens used in their production. These two antisera as well as an anti-VP123 serum were further characterized by immunoprecipitation, neutralization, and membrane immunofluorescence techniques. Results indicate that both of the major glycoprotein antigens are expressed on the surface of virions as well as on the surface of infected cells.  相似文献   

7.
Herpes simplex virus specifies five glycoproteins which have been found on the surface of both the intact, infected cells and the virion envelope. In the presence of the drug tunicamycin, glycosylation of the herpes simplex virus type 1 glycoproteins is inhibited. We present in this report evidence that the immunologically specificity of the glycoproteins designated gA, gB, and gD resides mainly in the underglycosylated "core" proteins, as demonstrated by the immunoblotting technique. We showed also that tunicamycin prevented exposure of the viral glycoproteins on the cell surface, as the individual glycoproteins lost their ability to participate as targets for the specific antibodies applied in the antibody-dependent, cell-mediated cytotoxicity test. Immunocytolysis was reduced between 73 and 97%, depending on the specificity of the antibodies used. The intracellular processing of the herpes simplex virus type 1-specific glycoprotein designated gC differed from the processing of gA, gB, and GD, as evidenced by the identification of an underglycosylated but immunochemically modified form of gC on the surface of infected cells grown in the presence of tunicamycin.  相似文献   

8.
The glycoproteins of pseudorabies virus (PRV) Phylaxia were characterized with monoclonal antibodies as specific reagents. Three major structural glycoproteins with molecular weights of 155,000 (155K) (gC), 122K (gA), and 90K (gB) could be identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. We investigated the processing of glycoproteins gA, gB, and gC by in vitro translation, pulse-chase experiments, and in the presence of the ionophore monensin which inhibits glycosylation. gA and gB were found to compose a single polypeptide, whereas gC was found to be a disulfide-linked glycoprotein complex. Immunoprecipitates formed with the aid of anti-gC monoclonal antibodies gave rise to three glycoprotein bands (gC0 [120K], gC1 [67K], and gC2 [58K]) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Limited proteolysis of gC0, gC1, and gC2 resulted in peptide maps of gC0 related to those of both gC1 and gC2. No common peptide bands between gC1 and gC2, however, were seen. We suggest that (i) gC1 and gC2 arise by proteolytic cleavage from the same precursor molecule and stay joined via disulfide bridges and (ii) gC0 is an uncleaved precursor.  相似文献   

9.
Tissue culture cells infected with herpes simplex type 1 virus express virus-specified glycoprotein antigens on the plasma membrane. Three of these have been previously identified and have been designated as Ag-11, Ag-8, and Ag-6. In the present study, immunoglobulins to each of the antigens were shown to be capable of mediating immunocytolysis in the presence of either complement (antibody-dependent complement-mediated cytotoxicity) or peripheral blood mononuclear cells (antibody-dependent cell-mediated cytotoxicity [ADCC]). Two herpes simplex virus type 1 strains, VR-3 and F, reacted similarly in the ADCC test in the presence of immunoglobulins to Ag-11, Ag-8, and Ag-6 in both infected Chang liver cells and HEp-2 cells. Anti-Ag-6, however, produced a lower ADCC reaction in HEp-2 cells than in Chang liver cells, suggesting differences in the Ag-6 surface expression in, or release from, these cells. Chang liver and HEp-2 cells infected with the MP mutant strain of herpes simplex virus type 1 showed reduced ADCC in the presence of anti-Ag-11 and anti-Ag-8, but no reactivity at all with anti-Ag-6. Crossed immunoelectrophoretic analysis showed that MP-infected cell extracts contain Ag-11 and Ag-8, but lack Ag-6. Polypeptide analysis of herpes simplex virus type 1 strains F, VR-3, and MP showed that Ag-11 consists of the glycoproteins gA and gB, that Ag-8 consists of gD, and that Ag-6 consists of gC. In conclusion, the present study demonstrates that either one of the glycoproteins (gC, gD, and a mixture of gA and gB) can function as a target for immunocytolysis and that the antibody preparation to gC (Ag-6) does not cross-react with any of the other glycoproteins.  相似文献   

10.
Monoclonal antibodies specific for herpes simplex virus type 1 (HSV-1) glycoproteins were used to demonstrate that HSV undergoes mutagen-induced and spontaneous antigenic variation. Hybridomas were produced by polyethylene glycol-mediated fusion of P3-X63-Ag8.653 myeloma cells with spleen cells from BALB/c mice infected with HSV-1 (strain KOS). Hybrid clones were screened for production of HSV-specific neutralizing antibody. The glycoprotein specificities of the antibodies were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of immunoprecipitates of radiolabeled infected-cell extracts. Seven hybridomas producing antibodies specific for gC, one for gB, and one for gD were characterized. All antibodies neutralized HSV-1 but not HSV-2. Two antibodies, one specific for gB and one specific for gC, were used to select viral variants resistant to neutralization by monoclonal antibody plus complement. Selections were made from untreated and bromodeoxyuridine- and nitrosoguanidine-mutagenized stocks of a plaque-purified isolate of strain KOS. After neutralization with monoclonal antibody plus complement, surviving virus was plaque purified by plating at limiting dilution and tested for resistance to neutralization with the selecting antibody. The frequency of neutralization-resistant antigenic variants selected with monoclonal antibody ranged from 4 X 10(-4) in nonmutagenized stocks to 1 X 10(-2) in mutagenized stocks. Four gC and four gB antigenic variants were isolated. Two variants resistant to neutralization by gC-specific antibodies failed to express gC, accounting for their resistant phenotype. The two other gC antigenic variants and the four gB variants expressed antigenically altered glycoproteins and were designated monoclonal-antibody-resistant, mar, mutants. The two mar C mutants were tested for resistance to neutralization with a panel of seven gC-specific monoclonal antibodies. The resulting patterns of resistance provided evidence for at least two antigenic sites on glycoprotein gC.  相似文献   

11.
Monospecific antisera to herpes simplex virus type 1 (HSV-1) glycoproteins gB, gC, and gD were used to identify the HSV-1-specific glycoproteins associated with the nuclear fraction as compared with those associated with cytoplasmic fraction, whole-cell lysates, and purified virions. The results indicate that a predominance of HSV glycoprotein precursors pgC(105), pgB(110), and pgD(52) is associated with the nuclear fraction. Treatment of the nuclear fraction with the enzyme endo-beta-N-acetylglucosaminidase H indicated that the lower-molecular-weight glycoproteins are sensitive to this endoglycosidase. These results suggest that in the nuclear fraction of HSV-1-infected cells virus-specific glycoproteins gB, gC, and gD are predominately in the high-mannose precursor form; however, detectable amounts of the fully glycosylated forms of gC and gD were also found.  相似文献   

12.
Oligomeric structure of glycoproteins in herpes simplex virus type 1.   总被引:10,自引:10,他引:0       下载免费PDF全文
A number of herpes simplex virus (HSV) glycoproteins are found in oligomeric states: glycoprotein E (gE)-gI and gH-gL form heterodimers, and both gB and gC have been detected as homodimers. We have further explored the organization of glycoproteins in the virion envelope by using both purified virions to quantitate glycoprotein amounts and proportions and chemical cross-linkers to detect oligomers. We purified gB, gC, gD, and gH from cells infected with HSV type 1 and used these as immunological standards. Glycoproteins present in sucrose gradient-purified preparations of two strains of HSV type 1, KOS and NS, were detected with antibodies to each of the purified proteins. From these data, glycoprotein molar ratios of 1:2:11:16 and 1:1:14:9 were calculated for gB/gC/gD/gH in KOS and NS, respectively. gL was also detected in virions, although we lacked a purified gL standard for quantitation. We then asked whether complexes of these glycoproteins could be identified, and if they existed as homo- or hetero-oligomers. Purified KOS was incubated at 4 degrees C with bis (sulfosuccinimidyl) suberate (BS3), an 11.4 A (1A = 0.1 mm) noncleavable, water-soluble cross-linker. Virus extracts were examined by Western blotting (immunoblotting), or immunoprecipitation followed by Western blotting, to assay for homo- and hetero-oligomers. Homodimers of gB, gC, and gD were detected, and hetero-oligomers containing gB cross-linked to gC, gC to gD, and gD to gB were also identified. gH and gL were detected as a hetero-oligomeric pair and could be cross-linked to gD or gC but not to gB. We conclude that these glycoproteins are capable of forming associations with one another. These studies suggest that glycoproteins are closely associated in virions and have the potential to function as oligomeric complexes.  相似文献   

13.
Herpes simplex virus (HSV) has 10 glycoproteins in its envelope. Glycoprotein B (gB), gC, gD, gH, and gL have been implicated in virus entry. We previously used chemical cross-linking to show that these five glycoproteins were close enough to each other to be cross-linked into homodimeric and hetero-oligomeric forms; hetero-oligomers of gB-gC, gC-gD, gD-gB, gH-gL, gC-gL and gD-gL were found in purified virions. To better understand the roles of these glycoproteins in viral entry, we have modified a standard HSV penetration assay to include cross-linkers. This allowed us to examine changes in associations of viral glycoproteins during the entry process. HSV-1(KOS) was adsorbed at 4 degrees C to human neuroblastoma cells (SY5Y). The temperature was raised to 37 degrees C and cells were treated with cross-linker at various times after the temperature shift. Cytoplasmic extracts were examined by Western blotting (immunoblotting) for viral glycoproteins. We found that (i) as in virus alone, the length and concentration of the cross-linking agent affected the number of specific complexes isolated; (ii) the same glycoprotein patterns found in purified virions were also present after attachment of virions to cells; and (iii) the ability to cross-link HSV glycoproteins changed as virus penetration proceeded, e.g., gB and gD complexes which were present during attachment disappeared with increasing time, and their disappearance paralleled the kinetics of penetration. However, this phenomenon appeared to be selective since it was not observed with gC oligomers. In addition, we examined the cross-linking patterns of gB and gD in null viruses K082 and KOSgD beta. Neither of these mutants, which attach but cannot penetrate, showed changes in glycoprotein cross-linking over time. We speculate that these changes are due to conformational changes which preclude cross-linking or spatial alterations which dissociate the glycoprotein interactions during the penetration events.  相似文献   

14.
Varicella-zoster virus (VZV) codes for approximately eight glycosylated polypeptides in infected cell cultures and in virions. To determine the number of serologically distinct glycoprotein gene products encoded by VZV, we have developed murine monoclonal antibodies to purified virions. Of 10 monoclonal antibodies which can immunoprecipitate intracellular VZV antigens and virion glycoproteins, 1 (termed gA) reacted with gp105, 1 (termed gB) reacted with gp115 (intracellular only), gp62, and gp57, and 8 (termed gC) reacted with gp92, gp83, gp52, and gp45. The anti-gA monoclonal antibody neutralized VZV infectivity in the absence of complement. All eight anti-gC monoclonal antibodies neutralized only in the presence of complement. An anti-gB monoclonal antibody obtained from another laboratory also neutralizes in the absence of complement. Since the above reactivities account for all major detectable VZV glycoprotein species, the data strongly suggest that VZV has three major glycoprotein genes which encode glycosylated polypeptides with neutralization epitopes.  相似文献   

15.
Cell-surface glycoproteins of mock-infected and herpes simplex virus type 1 (HSV-1)-infected BHK-21 and HEp-2 cells were radiolabeled by incubation with galactose oxidase followed by reduction with NaB3H4. The incorporation of radiolabel into glycoconjugates in both BHK-21 and HEp-2 cells was increased several fold following infection with HSV, showing an increase in surface-exposed Gal residues in the infected cells. This was further confirmed by an increase in binding of cell-surface-labeled glycoproteins gC and gB from HSV-infected BHK-21 cells to Ricinus communis agglutinin I, which is specific for beta-D-Gal residues. Prior treatment of cells with Clostridium perfringens neuraminidase enhanced the surface radiolabeling by the galactose oxidase/NaB3H4 method: HEp-2 cells exhibited over sixfold enhancement in labeling, while BHK-21 cells showed only a slight increase. HSV glycoprotein gC was the predominant cell-surface glycoprotein radiolabeled by the galactose oxidase/NaB3H4 method in virus-infected BHK-21 cells. The glycoprotein gC was purified by immunoaffinity column chromatography on monoclonal anti-gC-antibody-Sepharose. The radiolabel in the glycopeptides of gC was resistant to beta elimination, showing that it was associated only with Asn-linked oligosaccharides. A serial lectin affinity chromatography of glycopeptides on columns of concanavalin A-Sepharose, lentil (Lens culinaris) lectin-Sepharose, and Ricin I-agarose allowed the assignment of minimal oligosaccharide structures bearing terminal Gal residues in gC.  相似文献   

16.
Herpes simplex virus type 1 (HSV-1) glycoprotein C (gC) blocks complement activation, and glycoprotein E (gE) interferes with IgG Fc-mediated activities. While evaluating gC- and gE-mediated immune evasion in human immunodeficiency virus (HIV)-HSV-1-coinfected subjects, we noted that antibody alone was more effective at neutralizing a strain with mutations in gC and gE (gC/gE) than a wild-type (WT) virus. This result was unexpected since gC and gE are postulated to interfere with complement-mediated neutralization. We used pooled human immunoglobulin G (IgG) from HIV-negative donors to confirm the results and evaluated mechanisms of the enhanced antibody neutralization. We demonstrated that differences in antibody neutralization cannot be attributed to the concentrations of HSV-1 glycoproteins on the two viruses or to the absence of an IgG Fc receptor on the gC/gE mutant virus or to enhanced neutralization of the mutant virus by antibodies that target only gB, gD, or gH/gL, which are the glycoproteins involved in virus entry. Since sera from HIV-infected subjects and pooled human IgG contain antibodies against multiple glycoproteins, we determined whether differences in neutralization become apparent when antibodies to gB, gD, or gH/gL are used in combination. Neutralization of the gC/gE mutant was greatly increased compared that of WT virus when any two of the antibodies against gB, gD, or gH/gL were used in combination. These results suggest that gC and gE on WT virus provide a shield against neutralizing antibodies that interfere with gB-gD, gB-gH/gL, or gD-gH/gL interactions and that one function of virus neutralization is to prevent interactions between these glycoproteins.  相似文献   

17.
The frequency and fine specificity of herpes simplex virus (HSV)-reactive cytotoxic T lymphocytes (CTL) of C57BL/6 mice was investigated in limiting dilution culture. The reactivity patterns of virus-specific CTL were assayed on target cells infected with HSV type 1, strain KOS, HSV type 2, strain Mueller, and mutants of HSV-1 (KOS) antigenically deficient or altered in glycoproteins gC or gB, two of the four major HSV-1-encoded cell surface glycoprotein antigens. Most CTL clones recognized type-specific determinants on target cells infected with the immunizing HSV serotype. In addition, the majority of HSV-1-specific CTL did not cross-react with cells infected with syn LD70, a mutant of HSV-1 (KOS) deficient for the presentation of cell surface glycoprotein gC. These data are the first demonstration of the clonal specificity of HSV-1-reactive CTL, and they identify gC as the immunodominant antigen. The fine specificity of gC-specific CTL clones was analyzed on target cells infected with mutant viruses altered in the antigenic structure of gC. These mutants were selected by resistance to neutralization with monoclonal antibodies, referred to as monoclonal antibody-resistant (mar) mutants. Most mar mutations in gC did not affect recognition by the majority of CTL clones. This indicated that most epitopes recognized by CTL are distinct from those defined by antibodies. The finding, however, that one mar mutation in gC affected both CTL and antibody recognition of this antigen may help to define antigenic sites important to both humoral and cell-mediated immunity to herpesvirus infection.  相似文献   

18.
Polyvalent rabbit antisera against herpes simplex virus type 1 and 2 (HSV-1 and HSV-2), cytomegalovirus (CMV), and Epstein-Barr virus (EBV), monospecific antisera against affinity-purified HSV-2 glycoproteins gB and gG, and a panel of monoclonal antibodies against HSV and EBV proteins were used to analyze cross-reactive molecules in cells infected with the four herpesviruses. A combination of immunoprecipitation and Western blotting with these reagents was used to determine that all four viruses coded for a glycoprotein that cross-reacted with HSV-1 gB. CMV coded for proteins that cross-reacted with HSV-2 gC, gD, and gE. Both CMV and EBV coded for proteins that cross-reacted with HSV-2 gG. Antigenic counterparts to the p45 nucleocapsid protein of HSV-2 were present in HSV-1 and CMV, and counterparts of the major DNA-binding protein and the ribonucleotide reductase of HSV-1 were present in all the viruses. The EBV virion glycoprotein gp85 was immunoprecipitated by antisera to HSV-1, HSV-2, and CMV. Antisera to CMV and EBV neutralized the infectivity of both HSV-1 and HSV-2 at high concentrations. This suggests that cross-reactivity between these four human herpesviruses may have pathogenic as well as evolutionary significance.  相似文献   

19.
We used monoclonal antibodies reacting with glycoproteins specified by herpes simplex virus type 2 (HSV-2) to characterize the individual antigens in terms of structure, processing, and kinetics of synthesis in BHK or Vero infected cells. Our results provided a direct demonstration of the structural identity of the gA and gB proteins of HSV-2 as well as confirmation of the existence of type-specific and type-common domains within the gD molecule. They also show that, with the exception of gC, processing of the viral glycoproteins differs to some extent in Vero and BHK infected cells, possibly as a result of different efficiency of glycosylation or different processing of underglycosylated and unglycosylated products in the two cell types. Finally, we showed that individual HSV-2 glycoproteins are synthesized at greatly different times during the infectious cycle, possibly in response to their different roles in virus replication and assembly.  相似文献   

20.
The role of glycosylation in transport and expression of HSV-1 glycoproteins on the surface of HSV-1-infected African green monkey kidney cells was investigated by using tunicamycin (TM). A concentration of 0.05 microgram/ml of TM inhibited the replication of HSV-1 by greater than 99%. Immunoblot analysis of TM-treated and virus-infected cells indicated that 0.05 microgram/ml of TM blocked the addition of N-linked oligosaccharides into glycoproteins B, C and D. An immunofluorescence assay of TM-treated (0.05 and 0.1 microgram/ml) and virus-infected cells demonstrated the presence of nonglycosylated gC, gD and a reduced amount of gB on the surface of infected cells. The results suggest that the addition of N-linked oligosaccharides on the studied HSV-1 glycoproteins was not necessary for their transport and expression on the virus-infected cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号