首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We subfractionated intracellular vesicles from rat adipocytes in order to examine the subcellular distribution of endocytic vesicles or endosomes with respect to insulin-regulatable glucose-transporter (GT)-containing vesicles [James, Lederman & Pilch (1987) J. Biol. Chem. 262, 11817-11824]. Vesicles mediating fluid-phase endocytosis sedimented as a single major peak of greater density than the single distinct peak of GT-containing vesicles. This difference was also apparent during cellular insulin exposure and after insulin removal. Endocytosis of insulin and IGF (insulin-like growth factor) II was also examined. In sucrose gradients, IGF II-containing vesicles were less dense than those containing internalized insulin. Receptor-mediated endocytic vesicles were distinct from fluid-phase endocytic vesicles, but overlapped with the GT-containing vesicles. Vesicles containing internalized ligand were further fractionated by agarose-gel electrophoresis after various times of internalization. At least three different vesicle subpopulations containing the iodinated ligands were resolved after 5 min of internalization. Endocytic vesicles containing rapidly internalized insulin (1.5 min at 37 degrees C) consistently co-migrated with GT-containing vesicles. These data indicate that fluid-phase and receptor-mediated endocytosis occur via different pathways in adipocytes. Furthermore, whereas the intracellular GT-containing vesicles are distinct from fluid-phase vesicles, a rapidly labelled pool of insulin-containing vesicles consistently co-fractionated with GT-containing vesicles when separation techniques based on size, density and charge were used. This suggests that the insulin receptor may directly interact with the intracellular GT-containing vesicles after insulin-induced endocytosis.  相似文献   

2.
Summary The uptake and pathway of different markers and ligands for fluid-phase, adsorptive and receptor mediated endocytosis were analyzed in the epithelial cells lining the rete testis after their infusion into the lumen of these anastomotic channels. At 2 min after injection, diferric transferrin bound to colloidal gold was seen attached to the apical plasma membrane and to the membrane of endocytic coated and uncoated pits and vesicles. The injection of transferrin-gold in the presence of a 100-fold excess of unconjugated diferric transferrin revealed no binding or internalization of transferrin-gold. Similarly, apotransferrin-gold was neither bound to the apical plasma membrane nor internalized by these cells. These results thus indicate the presence of specific binding sites for diferric transferrin. At 5 min, internalized diferric transferrin-gold reached endosomes. At 15 and 30 min, the endosomes were still labeled but at these time intervals the transferrin-gold also appeared in tubular elements connected to or associated with these bodies or seen in close proximity to the apical plasma membrane. At 60 and 90 min, most of the transferrin-gold was no longer present in these organelles and was seen only exceptionally in secondary lysosomes. These results thus suggest that the tubular elements may be involved in the recycling of transferrin back to the lumen of the rete testis. The coinjection of transferrin-gold and the fluid-phase marker native ferritin revealed that both proteins were often internalized in the same endocytic pit and vesicle and shared the same endosome. However, unlike transferrin, native ferritin at the late time intervals appeared in dense multivesicular bodies and secondary lysosomes. When the adsorptive marker cationic ferritin and the fluid-phase marker albumin-gold were coinjected, again both proteins often shared the same endocytic pit and vesicle, endosome, pale and dense multivesicular body and secondary lysosomes. However, several endocytic vesicles labeled only with cationic ferritin appeared to bypass the endosomal and lysosomal compartments and to reach the lateral intercellular space and areas of the basement membrane. The rete epithelial cells, therefore, appear to be internalizing proteins and ligands by receptor-mediated and non-specific endocytosis which, after having shared the same endocytic vesicle and endosome, appear to be capable of being segregated and routed to different destinations.  相似文献   

3.
Receptor-mediated endocytosis of transferrin by Sertoli cells of the rat   总被引:1,自引:0,他引:1  
Binding of 125I-transferrin (125I-Tf) to the plasma membrane of Sertoli cells and its endocytosis were analyzed by means of light- and electron-microscope quantitative radioautography. Five minutes after 125I-Tf was injected into the interstitial space of the testis, a strong labeling of the basal aspect of the seminiferous epithelium was observed in light-microscope radioautographs. Injection of the same dose of 125I-Tf plus a 200-fold excess of cold transferrin resulted in a marked diminution of the radioautographic reaction, indicating that the initial strong labeling with radiolabeled transferrin was specific. These results were consistent with the localization of immunoreactive fluorescence of transferrin receptor at the base of the seminiferous epithelium. In electron-microscope radioautographs of tubules collected at 5 min after injection, the membrane of Sertoli cells facing the basement membrane was well labeled with 125I-Tf. At 15 and 30 min, the plasma membrane was less intensely labeled, but the silver grains were then seen overlying multivesicular bodies with an electron-lucent matrix, identified as endosomes. This population of endosomes was always seen at a short distance from the basal membrane of Sertoli cells. At 90 min, no more labeling of the plasma membrane, endosomes, or any other cytoplasmic component was observed. Isolated seminiferous tubules and Sertoli cells labeled with 125I-Tf at 4 degrees C were rinsed and reincubated in a label-free medium at 37 degrees C for various periods of time from 5 to 90 min. A radioactive protein precipitated by trichloroacetic acid, presumably intact transferrin, was released from the tubules into the incubating medium; when measured, it was found to increase rapidly from 5 to 45 min and stabilize thereafter. These results suggest that transferrin was internalized by receptor-mediated endocytosis, reached endosomes, and then was released to the extratubular space. When native ferritin (NF), a tracer for fluid-phase endocytosis, was infused within the lumen of seminiferous tubules and 125I-Tf was simultaneously injected into the interstitial space, both markers rapidly reached different populations of endosomes. Endosomes labeled with NF, scattered throughout the cytoplasm, evolved with time into dense multivesicular bodies and secondary lysosomes, whereas radiolabeled transferrin reached only the endosomes located in the basal cytoplasm of Sertoli cells. The latter thus appeared to be principally involved in the uptake and recycling of transferrin.  相似文献   

4.
Although endosomes and lysosomes are associated with different subcellular functions, we present evidence that a lysosomal enzyme, arylsulfatase-A, is present in prelysosomal vesicles which constitute part of the endosomal compartment. When human cultured fibroblasts were subfractionated with Percoll gradients, arylsulfatase-A activity was enriched in three subcellular fractions: dense lysosomes, light lysosomes, and light membranous vesicles. Pulsing the cells for 1 to 10 min with the fluid-phase endocytic marker, horseradish peroxidase, showed that endosomes enriched with the marker were distributed partly in the light lysosome fraction but mainly in the light membranous fraction. By pulsing the fibroblasts for 10 min with horseradish peroxidase conjugated to colloidal gold and then staining the light membranous and light lysosomal fractions for arylsulfatase-A activity with a specific cytochemical technique, the endocytic marker was detected under the electron microscope in the same vesicles as the lysosomal enzyme. The origin of the lysosomal enzyme in this endosomal compartment was shown not to be acquired through mannose 6-phosphate receptor-mediated endocytosis of enzymes previously secreted from the cell. Together with our recent finding that the light membranous fraction contains prelysosomes distinct from bona fide lysosomes and was highly enriched with newly synthesized arylsulfatase-A molecules, these results demonstrate that prelysosomes also constitute part of the endosomal compartment to which intracellular lysosomal enzymes are targeted.  相似文献   

5.
Pretreatment of J774 mouse macrophages by the dicationic macrolide antibiotic, azithromycin (AZ), selectively inhibited fluid-phase endocytosis of horseradish peroxidase and lucifer yellow, but not phagocytosis of latex beads. AZ delayed sequestration of receptor-bound transferrin and peroxidase-anti-peroxidase immune complexes into cell-surface endocytic pits and vesicles, but did not slow down the subsequent rate of receptor-mediated endocytosis. AZ down-regulated cell surface transferrin receptors, but not Fc gamma receptors, by causing a major delay in the accessibility of internalized transferrin receptors to the recycling route, without slowing down subsequent efflux, resulting in redistribution of the surface pool to an intracellular pool. Acidotropic accumulation of AZ was associated with an extensive vacuolation of late endosomes/lysosomes, and these compartments became inaccessible to horseradish peroxidase and immune complexes, but not to latex beads. The inhibitory profile of AZ cannot be solely accounted for by vacuolation and interference with acidification. AZ may help in dissecting various steps of the endocytic apparatus such as lateral mobility of receptors at the plasma membrane, formation of clathrin-independent endocytic vesicles, orientation of transferrin receptors into the recycling route, and fusogenicity with lysosomes.  相似文献   

6.
The subcellular distribution of beta-glucuronidase acquired by deficient human fibroblasts during co-culture with peritoneal macrophages was compared with that taken up by receptor-mediated endocytosis. Labelled enzyme taken up via receptors was located initially in a low-density endosomal fraction and was transferred to lysosomes within a few minutes. The beta-glucuronidase acquired during 24 h of co-culture was present almost entirely within lysosomes and had a distribution profile identical with that of endogenous beta-hexosaminidase. Monensin prevented transfer of radiolabelled enzyme from endosomes to lysosomes and had a similar effect on the distribution of enzyme acquired by direct transfer, causing beta-glucuronidase to accumulate within endosomes. When the temperature was lowered from 37 degrees C to 19 degrees C, the rate of transfer of enzyme from endosomes to lysosomes was decreased during both direct transfer and indirect receptor-mediated endocytosis. These results show that a lysosomal enzyme acquired by direct transfer during cell-to-cell contact follows a similar intracellular route and has a similar distribution to that of enzymes taken up via cell-surface receptors.  相似文献   

7.
By genetic analysis of Caenorhabditis elegans mutants defective in yolk uptake, we have identified new molecules functioning in the endocytosis pathway. Here we describe a novel J-domain-containing protein, RME-8, identified by such genetic analysis. RME-8 is required for receptor-mediated endocytosis and fluid-phase endocytosis in various cell types and is essential for C. elegans development and viability. In the macrophage-like coelomocytes, RME-8 localizes to the limiting membrane of large endosomes. Endocytosis markers taken up by the coelomocytes rapidly accumulate in these large RME-8-positive endosomes, concentrate in internal subendosomal structures, and later appear in RME-8-negative lysosomes. rme-8 mutant coelomocytes fail to accumulate visible quantities of endocytosis markers. These observations show that RME-8 functions in endosomal trafficking before the lysosome. RME-8 homologues are found in multicellular organisms from plants to humans but not in the yeast Saccharomyces cerevisiae. These sequence homologies suggest that RME-8 fulfills a conserved function in multicellular organisms.  相似文献   

8.
LIM kinase (LIMK) plays a critical role in stimulus-induced remodeling of the actin cytoskeleton by linking signals from the Rho family GTPases to changes in cofilin activity. Recent studies have shown an important role for LIMK1 signaling in tumor cell invasion through regulating actin dynamics. In this study, we investigate the role of LIMK1 in intracellular vesicle trafficking of lysosomes/endosomes. We analyzed by confocal immunofluorescence microscopy the cellular distribution of lysosomal proteins and the endocytosis of an endocytic tracer, epidermal growth factor (EGF), in LIMK1-transfected cells. We found in these cells an abnormal dispersed translocation of lysosomes stained for LIMPII and cathepsin D throughout the cytoplasm. The small punctate structures that stained for these lysosomal proteins were redistributed to the periphery of the cell. Computational 3D-image analysis of confocal immunofluorescence micrographs further demonstrated that these vesicles did not colocalize with the transferrin receptor, an early endosomal marker. Furthermore, LIMPII-positive lysosomes did not colocalize with early endosomes labeled with endocytosed Texas red-transferrin. These results indicate that there is no mixing between dispersed lysosomes and early endosomes in the LIMK1-transfected cells. Moreover, LIMK1 overexpression resulted in a marked retardation in the receptor-mediated internalization of Texas red-labeled EGF in comparison with mock-transfected cells. At 30 min after internalization, most of the Texas red-EGF staining overlapped with LIMPII-positive late endosomes/lysosomes in mock-transfected cells, whereas in LIMK1 transfectants only a small fraction of internalized EGF colocalized with LIMPII-positive structures in the perinuclear region. Taken together, the findings presented in this paper suggest that LIMK1 has a role in regulating vesicle trafficking of lysosomes and endosomes in invasive tumor cells.  相似文献   

9.
The experiments described in this study were designed to investigate receptor-mediated endocytosis of transferrin and its role in iron uptake by cultured chick presumptive myoblasts (dividing and non-dividing) and myotubes. The effects of a variety of inhibitors on the internalization of transferrin and iron were investigated and three main effects were found: (i) sulphydryl reagents and microtubular inhibitors reduced the rate of transferrin and iron internalization to similar degrees, (ii) metabolic inhibitors reduced the rate of iron uptake more than that of transferrin endocytosis, and (iii) lysosomotrophic agents almost completely abolished iron accumulation by the cells without any effect on the rate of transferrin internalization. The results suggest that metabolic energy is required not only for the endocytosis of transferrin but also for subsequent steps in the iron uptake process, and that iron release from transferrin occurs in acidified endosomes. Overall, these experiments show that all or virtually all of the iron taken up by developing muscle cells from transferrin occurs as a consequence of receptor-mediated endocytosis of the protein.  相似文献   

10.
The endocytic activity of epithelial cells from the rat epididymis in vitro has been examined by following the uptake of tracer compounds conjugated to proteins. Transferrin-gold and alpha 2-macroglobulin-gold were taken up initially in coated pits, internalized and sequestered into tubular-vesicular structures, multivesicular bodies and, in the case of alpha 2-macroglobulin, into lysosomes. Uptake could be prevented by an excess of unlabeled protein. Studies using 125I-alpha 2-macroglobulin and 125I-transferrin also showed that the uptake of these proteins was specific and could be displaced with increasing amounts of unlabeled protein. In addition, binding of 125I-transferrin to cells was saturable at 4 degrees C. These studies indicate that transferrin and alpha 2-macroglobulin are taken up by receptor-mediated endocytosis. In contrast, a fluid phase marker, bovine serum albumin-gold (BSA-gold), was initially taken up predominantly in uncoated caveolae rather than coated pits, and could not be displaced with excess BSA. By virtue of their charge, polycationized ferritin and unlabeled colloidal gold were taken up and internalized by adsorptive endocytosis, a pathway which is similar to fluid phase endocytosis. The uptake and internalization of alpha 2-macroglobulin and transferrin differed in a number of respects. Uptake and internalization of alpha 2-macroglobulin but not of transferrin was dependent on extracellular calcium. Only alpha 2-macroglobulin was transferred into lysosomes, whereas transferrin was recycled to the cell surface. Although the proton ionophore, monensin, and the transglutaminase inhibitor, dansylcadaverine, did not stop uptake and internalization of either alpha 2-macroglobulin or transferrin, they did prevent the transfer of alpha 2-macroglobulin to lysosomes.  相似文献   

11.
A cell-free system which reconstitutes early stages of receptor-mediated endocytosis has been developed, based on detection of the association between avidin-beta-galactosidase (Av beta Gal) and biotin-transferrin (B-Tf). Initially, Av beta Gal (a fluid-phase marker) and B-Tf (receptor-bound) are internalized and delivered to a common endosomal compartment in vivo and in vitro. Subsequently, these two probes enter divergent intracellular pathways: Av beta Gal is sorted from the endosome and directed for delivery to lysosomes, whereas B-Tf is segregated away from the fluid-phase marker, remaining bound to the transferrin receptor for return to the cell surface. Using the avidin-biotin association reaction to monitor the co-localization of these two probes, we have been able to reconstruct this sorting and segregation process in a cell-free system. The in vitro reaction is time-, temperature-, and ATP-dependent, and is not affected by NH4Cl; cell-free segregation of the two probes is also sensitive to N-ethylmaleimide. As these characteristics are also properties of in vitro endocytic vesicle fusion, it is likely that the latter event is a prerequisite for the sorting and segregation process. Both the in vivo and in vitro sorting of Av beta Gal and B-Tf to their respective and distinct destinations can be followed by subcellular fractionation on Percoll gradients. Our observations provide the first evidence that the cellular mechanism to identify, sort, and sequester endocytosed material can be reconstituted in a cell-free system.  相似文献   

12.
Chlamydiae are obligate intracellular pathogens that reside within a membrane-bound vacuole throughout their developmental cycle. In this study, the intraphagosomal pH of Chlamydia pneumoniae ( Cpn ) was qualitatively assessed, and the intracellular fate of the pathogen-containing vacuole and its interaction with endocytic organelles in human epithelial cells were analysed using conventional immunofluorescence and confocal microscopy. The pH-sensitive probes acridine orange (AO), LysoTracker (LyT) and DAMP did not accumulate in the bacterial inclusion. In addition, exposure of cells to bafilomycin A1 (BafA1), a potent acidification inhibitor, did not inhibit or delay chlamydial growth. The chlamydial compartment was not accessible to the fluid-phase tracer Texas Red (TR)-dextran and did not exhibit any level of staining for the late endosomal marker cation-independent mannose-6-phosphate receptor (Ci-M6PR) or for the lysosomal-associated membrane proteins (LAMP-1 and -2) and CD63. In addition, transferrin receptor (TfR)-enriched vesicles were observed close to Cpn vacuoles, potentially indicating a specific translocation of these organelles through the cytoplasm to the vicinity of the vacuole. We conclude that Cpn , like other chlamydial spp., circumvents the host endocytic pathway and inhabits a non-acidic vacuole, which is dissociated from late endosomes and lysosomes, but selectively accumulates early endosomes.  相似文献   

13.
Endocytosed proteins are sorted in early endosomes to be recycled to the plasma membrane or transported further into the degradative pathway. We studied the role of endosomes acidification on the endocytic trafficking of the transferrin receptor (TfR) as a representative for the recycling pathway, the cation-dependent mannose 6-phosphate receptor (MPR) as a prototype for transport to late endosomes, and fluid-phase endocytosed HRP as a marker for transport to lysosomes. Toward this purpose, bafilomycin A1 (Baf), a specific inhibitor of the vacuolar proton pump, was used to inhibit acidification of the vacuolar system. Microspectrofluorometric measurement of the pH of fluorescein-rhodamine-conjugated transferrin (Tf)-containing endocytic compartments in living cells revealed elevated endosomal pH values (pH > 7.0) within 2 min after addition of Baf. Although recycling of endocytosed Tf to the plasma membrane continued in the presence of Baf, recycled Tf did not dissociate from its receptor, indicating failure of Fe3+ release due to a neutral endosomal pH. In the presence of Baf, the rates of internalization and recycling of Tf were reduced by a factor of 1.40 +/- 0.08 and 1.57 +/- 0.25, respectively. Consequently, little if any in TfR expression at the cell surface was measured during Baf treatment. Sorting between endocytosed TfR and MPR was analyzed by the HRP-catalyzed 3,3'- diaminobenzidine cross-linking technique, using transferrin conjugated to HRP to label the endocytic pathway of the TfR. In the absence of Baf, endocytosed surface 125I-labeled MPR was sorted from the TfR pathway starting at 10 min after uptake, reaching a plateau of 40% after 45 min. In the presence of Baf, sorting was initiated after 20 min of uptake, reaching approximately 40% after 60 min. Transport of fluid-phase endocytosed HRP to late endosomes and lysosomes was measured using cell fractionation and immunogold electron microscopy. Baf did not interfere with transport of HRP to MPR-labeled late endosomes, but nearly completely abrogated transport to cathepsin D- labeled lysosomes. From these results, we conclude that trafficking through early and late endosomes, but not to lysosomes, continued upon inactivation of the vacuolar proton pump.  相似文献   

14.
In addition to their roles in normal cell physiology, endocytic processes play a key role in many diseases. In this review, three diseases are discussed as examples of the role of endocytic processes in disease. The uptake of cholesterol via LDL is central to our understanding of atherosclerosis, and the study of this disease led to many of the key breakthroughs in understanding receptor-mediated endocytosis. Alzheimer’s disease is a growing burden as the population ages. Endosomes and lysosomes play important but only partially understood roles in both the formation and the degradation of the amyloid fibrils that are associated with Alzheimer’s disease. Inherited lysosomal storage diseases are individually rare, but collectively they affect many individuals. Recent advances are leading to improved enzyme replacement therapy and are also leading to small-molecule drugs to treat some of these diseases.Endocytosis plays many vital roles in normal cell physiology, and as described in this article, endocytic processes can also play significant roles in pathology. Nutrient uptake is one of the essential functions of endocytosis. Two of the best-characterized examples of this are the uptake of cholesterol via the low-density lipoprotein (LDL) receptor (Goldstein and Brown 2009) and the uptake of iron via transferrin and the transferrin receptor (Aisen et al. 2001). Another important role for endocytosis is the regulation of cell-surface expression of membrane proteins, especially receptors and transporters. The balance between recycling or trafficking to storage organelles or to late endosomes and lysosomes (LE/Ly) is often a determining factor in regulating surface expression levels of membrane proteins. Thus, the membrane sorting that occurs in endosomes is important for regulating cell physiology. The pH levels in endosomes play an important role in many functions of endocytosis, including release of iron from transferrin, release of LDL and other ligands from their receptors, and activation of lysosomal hydrolases. As discussed herein, many of these same processes can also play a role in human diseases. A few specific diseases—atherosclerosis, Alzheimer’s disease, and lysosomal storage diseases—are used to illustrate this.  相似文献   

15.
《The Journal of cell biology》1985,101(5):1673-1679
We have found that hypertonic medium inhibited the receptor-mediated uptake of the chemotactic peptide N-formylnorleucylleucylphenylalanine without affecting fluid-phase endocytosis by polymorphonuclear leukocytes (PMNs). Morphological and biochemical evidence demonstrated that cells in hypertonic medium did not accumulate peptide in a receptor-mediated manner. However, the cells continued to form endosomes containing fluid-phase markers. Furthermore, the content of these endosomes was processed normally, i.e., both digested and intact material were released into the medium. The inhibition of receptor- mediated uptake was a function of the tonicity. Partial inhibition occurred in 0.45 and 0.6 osmolar medium and maximal inhibition occurred in 0.75 osmolar medium. The inhibition was independent of the solute used to increase the tonicity: sodium chloride, sucrose, and lactose all inhibited uptake to similar extents. Hypertonic medium had little effect on saturable peptide binding. However, it did prevent the clustering of surface molecules as indicated by the inhibition of capping of fluorescent concanavalin A. In addition, hypertonic medium prevented the peptide-stimulated increase in cytosolic calcium levels as measured by quin 2 fluorescence. The tonicity dependence of the inhibition of quin 2 fluorescence paralleled the inhibition of receptor- mediated uptake.  相似文献   

16.
At 4 degrees C transferrin bound to receptors on the reticulocyte plasma membrane, and at 37 degrees C receptor-mediated endocytosis of transferrin occurred. Uptake at 37 degrees C exceeded binding at 4 degrees C by 2.5-fold and saturated after 20-30 min. During uptake at 37 degrees C, bound transferrin was internalized into a trypsin- resistant space. Trypsinization at 4 degrees C destroyed surface receptors, but with subsequent incubation at 37 degrees C, surface receptors rapidly appeared (albeit in reduced numbers), and uptake occurred at a decreased level. After endocytosis, transferrin was released, apparently intact, into the extracellular space. At 37 degrees C colloidal gold-transferrin (AuTf) clustered in coated pits and then appeared inside various intracellular membrane-bounded compartments. Small vesicles and tubules were labeled after short (5-10 min) incubations at 37 degrees C. Larger multivesicular endosomes became heavily labeled after longer (20-35 min) incubations. Multivesicular endosomes apparently fused with the plasma membrane and released their contents by exocytosis. None of these organelles appeared to be lysosomal in nature, and 98% of intracellular AuTf was localized in acid phosphatase-negative compartments. AuTf, like transferrin, was released with subsequent incubation at 37 degrees C. Freeze-dried and freeze-fractured reticulocytes confirmed the distribution of AuTf in reticulocytes and revealed the presence of clathrin-coated patches amidst the spectrin coating the inner surface of the plasma membrane. These data suggest that transferrin is internalized via coated pits and vesicles and demonstrate that transferrin and its receptor are recycled back to the plasma membrane after endocytosis.  相似文献   

17.
Rab GTPases comprise a large family of monomeric proteins that regulate a diverse number of membrane trafficking events, including endocytosis. In this paper, we examine the subcellular distribution and function of the GTPase Rab15. Our biochemical and confocal immunofluorescence studies demonstrate that Rab15 associates with the transferrin receptor, a marker for the early endocytic pathway, but not with Rab7 or the cation-independent mannose 6-phosphate receptor, markers for late endosomal membranes. Furthermore, Rab15 colocalizes with Rab4 and -5 on early/sorting endosomes, as well as Rab11 on pericentriolar recycling endosomes. Consistent with its localization to early endosomal membranes, overexpression of the constitutively active mutant HArab15Q67L reduces receptor-mediated and fluid phase endocytosis. Therefore, our functional studies suggest that Rab15 may function as an inhibitory GTPase in early endocytic trafficking.  相似文献   

18.
We have previously shown that overexpression of LIM kinase1 (LIMK1) resulted in a marked retardation of the internalization of the receptor-mediated endocytic tracer, Texas red-labeled epidermal growth factor (EGF) in low-invasive human breast cancer cell MCF-7. We thereby postulate that LIMK1 signaling plays an important role in the regulation of ligand-induced endocytosis of EGF receptor (EGFR) in tumor cells by reorganizing and influencing actin-filament dynamics. In the present study, we further assessed the effect of wild-type LIMK1, a kinase-deficient dominant negative mutant of LIMK1 (DN-LIMK1) and an active, unphosphorylatable cofilin mutant (S3A cofilin) on internalization of EGF-EGFR in MDA-MB-231, a highly invasive human breast cancer cell line. We demonstrate here that a marked delay in the receptor-mediated internalization of Texas red-labeled EGF was observed in the wild-type LIMK1 transfectants, and that most of the internalized EGF staining were accumulated within transferrin receptor-positive early endosomes even after 30 min internalization. In contrast, the expression of dominant-negative LIMK1 mutant rescued the efficient endocytosis of Texas red-EGF, and large amounts of Texas red-EGF staining already reached LIMPII-positive late endosomes/lysosomal vacuoles after 15 min internalization. We further analyzed the effect of S3A cofilin mutant on EGFR trafficking, and found an efficient delivery of Texas red-EGF into late endosomes/lysosomes at 15–30 min after internalization. Taken together, our novel findings presented in this paper implicate that LIMK1 signaling indeed plays a pivotal role in the regulation of EGFR trafficking through the endocytic pathway in invasive tumor cells.  相似文献   

19.
The transferrin receptor of human skin fibroblasts was studied as an in vitro model target antigen receptor for interaction with protein-polymer conjugates having potential for targeted drug delivery. Pinocytic uptake of 125I-labelled N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugated to monoclonal antibody B3/25 (specific for the transferrin receptor) or transferrin was up to 9-fold greater than uptake of the parent HPMA copolymer. The ability of these conjugates to bind specifically was confirmed by Scatchard analysis. Pinocytic internalisation was dependent on the molecular mass of the conjugate. Intracellular routing following internalisation was evaluated using density-gradient centrifugation. Unmodified HPMA copolymer was transferred via the endosomal compartment into secondary lysosomes, where, being resistant to degradation, it accumulated. Although the majority of endocytosed transferrin is recycled via the endosome, it was shown that any transferrin reaching the lysosomes was rapidly degraded and low-molecular-weight degradation products were released. Monoclonal antibody B3/25 showed a subcellular distribution consistent with prolongation on the cell surface, followed by internalisation and subcellular trafficking, via endosomes, into the lysosomal compartment, with subsequent degradation. Conjugation of protein to HPMA copolymer increased lysosomal accumulation of polymer up to 9-fold, with no detectable degradation of conjugate. The data presented here have implications regarding clinical potential of protein-HPMA copolymer conjugates designed for lysosomotropic drug delivery.  相似文献   

20.
This paper shows that the ~66 kDa band, previously isolated from the HepG2 cell line as an oligonucleotide (ON) plasma membrane ‘receptor’, is induced by Mycoplasma infection. Moreover, this band has been identified as the invariant membrane protein of Mycoplasma hyorhinis, p70, based on ribosomal DNA sequencing combined with ON ligand blotting after p70 immunoprecipitation by a monoclonal antibody. Whereas antibiotic treatment of infected HepG2 cells strongly decreased ON capture, as measured by a biochemical assay, conversely, deliberate infection of HeLa cells with M.hyorhinis dramatically promoted ON uptake but did not affect receptor-mediated endocytosis of transferrin. This was confirmed by confocal microscopy of infected HepG2 cells, which also showed an indistinguishable labelling pattern after exposure of living cells to fluorescent ON and after p70 immunolabelling in permeabilised fixed cells. We propose that ON binds to p70 on M.hyorhinis attached at the cell surface, after which the complex is internalised by ‘piggy-back’ endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号