首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Histone H1 from erythrocytes of Japanese quail was resolved in a sodium dodecyl sulfate (SDS)-polyacrylamide gel into five fractions differing in apparent molecular weights. A polymorphism of histone H1.1, H1.2, and H1.3 bands was detected among quail individuals. While some birds possessed either a high (phenotype .3+) or a low (phenotype .3+/.3-) level of H1.3, at least half of the quail population lacked this H1 band (phenotype .3-). Appropriate genetic crosses demonstrated that H1.3 behaved as though it was coded by a gene with two codominant alleles at an autosomal locus. Using two-dimensional polyacrylamide gel electrophoresis (acid-urea followed by SDS gels), it was found that birds .3+ contained polypeptides H1.b1 and H1.b'1; birds .3-, polypeptides H1.b2 and H1.b'2 with lower apparent molecular weights; and birds .3+/.3-, both types of polypeptides in equal proportions. The H1.b2 + H1.b'2 complement was not discernible in SDS gels, for it migrated together with H1.c' within band H1.4. It was found that a small number of birds lacking the H1.2 band in SDS gels failed to express histone H1.a. Since birds with phenotype .2- with a defective allele of the gene H1.a were simultaneously lacking the H1.3 band, it seems that the imperfect allele of the H1.a gene might be closely linked to the alleles producing H1.b2 + H1.b'2.  相似文献   

2.
Two isoforms of the erythrocyte histone H1.a were identified in two conservative flocks of Rhode Island Red chickens and six conservative flocks of ducks. The H1.a1 and H1.a2 isoforms formed three phenotypes (a1, a2 and a1a2) and were electrophoretically similar in the two species. The frequency of phenotype and histone H1.a allele occurrence varied within the genetic groups of birds, but the relatively rare allele a 2 was only detected in chicken and duck strains with colored feathers. Using mass spectrometry, we established that the difference between the measured masses of the duck H1.a isoforms was 156 Da. Since this value corresponds to the mass of the arginine residue alone or to the combined mass of the valine and glycine residues, we believe that the polymorphism of duck histone H1.a might have originated from sequence variation. A mass difference of 1 Da observed between chicken H1.a isoforms corresponded well to the previously detected Glu/Lys substitution (0.9414 Da) at position 117.  相似文献   

3.
Our goal was to characterize a phenotypic variation of the pheasant erythrocyte linker histone subtype H1.c. By using two-dimensional polyacrylamide gel electrophoresis three histone H1.c phenotypes were identified. The differently migrating allelic variants H1.c1 and H1.c2 formed either two homozygous phenotypes, c1 and c2, or a single heterozygous phenotype, c1c2. In the pheasant population screened, birds with phenotype c2 were the most common (frequency 0.761) while individuals with phenotype c1 were rare (frequency 0.043).  相似文献   

4.
Chicken erythrocyte chromatin contains, besides the specific histone H5, a set of histone H1 subtypes. Five of them were isolated by ion-exchange chromatography and these very related proteins, called H1A, H1B, H1C, H1D and H1E, were characterized by their amino acid compositions.  相似文献   

5.
6.
Most of avian histone H1 non-allelic subtypes, i.e. eight out of nine, show polymorphic heterogeneity manifested by the presence of two or three allelic variants formed as a result of amino acid deletion and substitution. In addition, some of histone H1 non-allelic subtypes exhibit various allelic complements in different bird species leading to the widening of a whole pool of histone H1 polymorphic variation. A wide range of histone H1 heterogeneity may indicate that the polymorphic variants can individually modulate some histone H1-dependent cellular processes by showing allele-specific influence on chromatin organization and function. Although, the exact way of avian histone H1 allelic variants’ activity is not known, their structural separateness inferred from biochemical experiments and relationship with some characteristics of organism functioning disclosed in the genetic studies seem to confirm their importance. The aim of this review is to characterize the molecular origin of histone H1 polymorphisms and draw attention to the link between the histone H1 polymorphic variants and avian organismal features related to the physiological effects of bird individuals’ living in the natural and breeding populations.  相似文献   

7.
Summary An electrophoretic analysis of histone H1 and its fragments was carried out for several orders of insects. A total of more than 500 histone H1 variants were examined. For some of them a study of general molecular structure was performed by the method of incomplete succinylation. The molecular length of the fragment containing the C-terminal domain presumably responsible for chromatin condensation was found to be highly variable. The variance of the logarithm of the electrophoretic mobility of H1, which reflects its molecular length, was estimated for seven insect orders. There was no relationship between this variance and the evolutionary age of an order. On the other hand, the variance turned out to correlate strongly with the recent species number in the order, indicating that the accumulation of variation in H1 molecular length was in line with the general intensity of adaptive processes in the orders. This result seems to provide evidence for an adaptive mode of the evolution of the molecular length of H1. The possible role of H1 variability in adaptive evolution is discussed.  相似文献   

8.
Primary structure of chicken erythrocyte histone H2A   总被引:6,自引:0,他引:6  
The complete amino acid sequence (128 residues) of the chicken erythrocyte histone H2A was deduced from the data provided by structural studies on the tryptic peptides from the maleylated histone and of the peptides obtained by thermolysin digestion of the native protein. The sequence of chicken histone H2A differs from the calf homologous histone by the deletion of one residue of histidine at position 123 or 124 and three conservative substitutions: a residue of serine replaces a residue of threonine at position 16, a residue of aspartic acid replaces a residue of glutamic acid at position 121 and a residue of alanine replaces a residue of glycine at position 128.  相似文献   

9.
Following treatment of hen erythrocyte nuclei with dimethyl 3,3'-dithiobispropionimidate, dimers between histones H1a, H1b, and H5 were extracted with 5% perchloric acid. They resolved electrophoretically into four sub-bands and these were identified by non-reducing/reducing gel electrophoresis. The H5-H5 homodimer species was purified by gel electrophoresis and was treated sequentially with BrCN and dithiothreitol. The pattern of resulting fragments indicates that cross-links were mainly formed between the COOH-terminal portions and at a significantly lower frequency between the COOH-terminal and the NH2-terminal portions.  相似文献   

10.
11.
The pea genome contains seven histone H1 genes encoding different subtypes. Previously, the DNA sequence of only one gene, His1, coding for the subtype H1-1, had been identified. We isolated a histone H1 allele from a pea genomic DNA library. Data from the electrophoretic mobility of the pea H1 subtypes and their N-bromosuccinimide cleavage products indicated that the newly isolated gene corresponded to the H1-5 subtype encoded by His5. We confirmed this result by sequencing the gene from three pea lines with H1-5 allelic variants of altered electrophoretic mobility. The allele of the slow H1-5 variant differed from the standard allele by a nucleotide substitution that caused the replacement of the positively charged lysine with asparagine in the DNA-interacting domain of the histone molecule. A temperature-related occurrence had previously been demonstrated for this H1-5 variant in a study on a worldwide collection of pea germplasm. The variant tended to occur at higher frequencies in geographic regions with a cold climate. The fast allelic variant of H1-5 displayed a deletion resulting in the loss of a duplicated pentapeptide in the C-terminal domain.  相似文献   

12.
Murine stocks with wild-derived hypoxanthine phosphoribosyltransferase (HPRT) A alleles (Hprt a) have erythrocyte HPRT activity levels that are approximately 25-fold (Mus musculus castaneus) and 70-fold (Mus spretus) higher than those of laboratory strains of mice with the common Hprt b allele (Mus musculus: C3H/HeHa or C57B1/6). Since the purified HPRT A and B enzymes have substantially similar maximal specific activities (64 and 46 units/mg of protein, respectively), we infer that these HPRT activity levels closely approximate the relative levels of HPRT protein in these cells. Red blood cells of HPRT A and B mice have similar levels of adenine phosphoribosyltransferase activity (APRT; EC 2.4.2.7) and reticulocyte percentages, which suggests that the elevated levels of HPRT in erythrocytes of HPRT A mice are not secondary consequences of abnormal erythroid cell development. The HPRT activity levels in reticulocytes of HPRT B mice are approximately 35-fold higher than the levels in their erythrocytes and approach the HPRT activity levels in reticulocytes of HPRT A mice. Thus, the marked differences in the levels of HPRT protein in erythrocytes of HPRT A and B mice result from differences in the extent to which the HPRT A and B proteins are retained as reticulocytes mature to erythrocytes. The substantial and preferential loss of HPRT B activity from reticulocytes is paralleled by an equivalent loss of HPRT immunoreactive protein (i.e., CRM) from that cell, and we infer that the HPRT B protein is degraded or extruded as reticulocytes mature to erythrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
The H1 family is the most divergent subgroup of the highly conserved class of histone proteins [Cole: Int J Pept Protein Res 30:433–449, 1987]. In several vertebrate species, the H1 complement comprises five or more subtypes, and tissue specific patterns of H1 histones have been described. The diversity of the H1 histone family raises questions about the functions of different H1 subtypes and about the differential control of expression of their genes. The expression of main type H1 genes is coordinated with DNA replication, whereas the regulation of synthesis of replacement H1 subtypes, such as H1° and H5, and the testis specific H1t appears to be more complex. The differential control of H1 gene expression is reflected in the chromosomal organization of the genes and in different promoter structures. This review concentrates on a comparison of the chromosomal organization of main type and replacement H1 histone genes and on the differential regulation of their expression. General structural and functional data, which apply to both H1 and core histone genes and which are covered by recent reviews, will not be discussed in detail.  相似文献   

15.
We have analysed the circadian rhythm of Arabidopsis thaliana leaf movements in the accession Cvi from the Cape Verde Islands, and in the commonly used laboratory strains Columbia (Col) and Landsberg (erecta) (Ler), which originated in Northern Europe. The parental lines have similar rhythmic periods, but the progeny of crosses among them reveal extensive variation for this trait. An analysis of 48 Ler/Cvi recombinant inbred lines (RILs) and a further 30 Ler/Col RILs allowed us to locate four putative quantitative trait loci (QTLs) that control the period of the circadian clock. Near-isogenic lines (NILs) that contain a QTL in a small, defined chromo- somal region allowed us to confirm the phenotypic effect and to map the positions of three period QTLs, designated ESPRESSO, NON TROPPO and RALENTANDO. Quantitative trait loci at the locations of RALENTANDO and of a fourth QTL, ANDANTE, were identified in both Ler/Cvi and Ler/Col RIL populations. Some QTLs for circadian period are closely linked to loci that control flowering time, including FLC. We show that flc mutations shorten the circadian period such that the known allelic variation in the MADS-box gene FLC can account for the ANDANTE QTL. The QTLs ESPRESSO and RALENTANDO identify new genes that regulate the Arabidopsis circadian system in nature, one of which may be the flowering-time gene GIGANTEA.  相似文献   

16.
The complete amino acid sequence of a main variant, H1b, of human spleen histone H1 was determined, following previous determinations of human spleen histones H2B, H2A, H3, and H4. High-performance liquid chromatography on C8 silica of the H1 fraction yielded the homogeneous H1b subfraction; this variant was estimated to account for 60% of the total of the four H1 variants. The sequence determination was performed with four main fragments, I to IV, obtained by limited chymotryptic digestion of H1b. Together with direct sequencing by automated Edman degradation of fragments II, III, and IV, fragment I, blocked at the N-terminal, and fragment IV, the C-terminal half the H1b molecule, were sequenced after further digestion with staphylococcal protease and others. The four fragments were aligned with three overlapping peptides each derived from chymotryptic partial fragments, I-II and I-II-III, and intact H1b. Carboxypeptidase digestion of intact H1b confirmed the C-terminal sequence of the molecule. Thus, the total sequence of H1b was completely determined; it consists of a total of 218 amino acid residues, has a molecular weight of 21,734 in the unmodified form, and is completely acetylated at the N-terminal serine residue and partially methylated at the lysine residue 25. This sequence is compared with two mammalian somatic H1 sequences.  相似文献   

17.
Sun JM  Chen HY  Moniwa M  Samuel S  Davie JR 《Biochemistry》1999,38(18):5939-5947
  相似文献   

18.
A 3.5-kb HindIII fragment of a histone gene cluster was isolated from a recombinant phage out of a duck genomic library. This DNA contains a duck H1 gene and its flanking sequences. The hybridization probe, which was used to screen for the H1 gene, had been designed on the basis of a comparative analysis of available H1 gene and protein data. Most H1 histones contain repeated motifs in their C-terminal domain, and these form part of an octapeptide (ser pro lys lys ala lys lys pro) that is highly conserved in many H1 histone proteins. A comparison of the duck H1 described here with two different published chicken H1 histone sequences reveals conservative amino acid exchanges at 22 (of 217 and 218, respectively) positions. The homology is maintained at the flanking sequences, and includes the putative H1 histone gene-specific signal structures and the established 3' stem and loop structures and the CAAGA box. The duck H1 gene and its flanking sequence have been found in identical arrangements in two recombinant bacteriophages, but minor sequence variations and genomic Southern blotting after HindIII digestion suggest that we have either isolated alleles of this genome segment or that the gene described may occur twice per haploid duck genome.  相似文献   

19.
The general patterns of histone H1 proteins from erythrocyte nuclei of Muscovy duck individuals were similar to those of Pekin type ducks both in acetic acid-urea and 2D polyacrylamide gels. We show here that Muscovy duck histone H1.z in the tested population was represented by three different electromorphs, each presumably encoded by a distinct allelic gene. Accordingly, we have identified six phenotypes consisting of the homodimeric and heterodimeric combinations of the three isoforms. The frequency of the presumptive alleles ranged from 0.506 for the main allele z1 to 0.379 for allele z2 and only 0.113 for the rarest allele z3. In addition to a standard set of somatic H1 variants, an unusual protein X, absent in other avian species, was also revealed.  相似文献   

20.
Edwards KD  Lynn JR  Gyula P  Nagy F  Millar AJ 《Genetics》2005,170(1):387-400
Temperature compensation is a defining feature of circadian oscillators, yet no components contributing to the phenomenon have been identified in plants. We tested 27 accessions of Arabidopsis thaliana for circadian leaf movement at a range of constant temperatures. The accessions showed varying patterns of temperature compensation, but no clear associations to the geographic origin of the accessions could be made. Quantitative trait loci (QTL) were mapped for period and amplitude of leaf movement in the Columbia by Landsberg erecta (CoL) and Cape Verde Islands by Landsberg erecta (CvL) recombinant inbred lines (RILs) at 12 degrees , 22 degrees , and 27 degrees . Six CvL and three CoL QTL were located for circadian period. All of the period QTL were temperature specific, suggesting that they may be involved in temperature compensation. The flowering-time gene GIGANTEA and F-box protein ZEITLUPE were identified as strong candidates for two of the QTL on the basis of mapping in near isogenic lines (NILs) and sequence comparison. The identity of these and other candidates suggests that temperature compensation is not wholly determined by the intrinsic properties of the central clock proteins in Arabidopsis, but rather by other genes that act in trans to alter the regulation of these core proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号