首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The retinohypothalamic tract (RHT) is a monosynaptic retinofugal pathway mediating information concerning the light/dark cycle from the retina to the brain's biological clock located in the suprachiasmatic nucleus (SCN). Light information, which daily adjusts (entrains) the rhythms of behaviour and physiology generated by the SCN, is mediated by two neurotransmitters, viz. glutamate and pituitary adenylate cyclase activating polypeptide (PACAP), co-stored in the RHT. Substance P (SP) modulates photic- and glutamate-induced phase shifts but data on its possible presence in the RHT are conflicting. By labelling the RHT projection in the SCN with the anterograde tracer cholera toxin subunit B (ChB) and antibodies against PACAP, we have shown that SP immunoreaction is absent from the PACAP/ChB-labelled nerve fibres in the SCN, indicating that the SP-immunoreactive nerve fibres are not part of the RHT but may originate from SP-immunoreactive cell bodies located within the SCN. In the retina, SP immunoreactivity occurs in amacrine cells in the inner nuclear cell layer, in a few displaced amacrine cells in the ganglion cell layer and in a dense plexus of SP-immunoreactive nerve terminals of the inner plexiform layer. Double immunostaining has revealed that SP-immunoreactive cells and fibres in the retina are not identical with the PACAP-immunoreactive ganglion cells that constitute the RHT. These findings together with the demonstration that bilateral eye enucleation does not decrease the number of SP-immunoreactive nerve fibres in the SCN indicate that SP is not a neurotransmitter in the RHT but could be an intrinsic neurotransmitter of the SCN modulating photic input to the clock.  相似文献   

2.
There is increasing evidence that melanopsin-expressing ganglion cells (ipRGCs) are altered in retinal pathologies. Using a streptozotocin-induced (STZ) model of diabetes, we investigated the impact of diabetic retinopathy on non-visual functions by analyzing ipRGCs morphology and light-induced c-Fos and Period 1–2 clock genes in the central clock (SCN). The ability of STZ-diabetic mice to entrain to light was challenged by exposure animals to 1) successive light/dark (LD) cycle of decreasing or increasing light intensities during the light phase and 2) 6-h advance of the LD cycle. Our results show that diabetes induces morphological changes of ipRGCs, including soma swelling and dendritic varicosities, with no reduction in their total number, associated with decreased c-Fos and clock genes induction by light in the SCN at 12 weeks post-onset of diabetes. In addition, STZ-diabetic mice exhibited a reduction of overall locomotor activity, a decrease of circadian sensitivity to light at low intensities, and a delay in the time to re-entrain after a phase advance of the LD cycle. These novel findings demonstrate that diabetes alters clock genes and behavioral responses of the circadian timing system to light and suggest that diabetic patients may show an increased propensity for circadian disturbances, in particular when they are exposed to chronobiological challenges.  相似文献   

3.
Neurotransmitters of the retino-hypothalamic tract   总被引:7,自引:0,他引:7  
The brain's biological clock, which, in mammals, is located in the suprachiasmatic nucleus (SCN), generates circadian rhythms in behaviour and physiology. These biological rhythms are adjusted daily (entrained) to the environmental light/dark cycle via a monosynaptic retinofugal pathway, the retinohypothalamic tract (RHT). In this review, the anatomical and physiological evidence for glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP) as principal transmitters of the RHT will be considered. A combination of immunohistochemistry at both the light- and electron-microscopic levels and tract-tracing studies have revealed that these two transmitters are co-stored in a subpopulation of retinal ganglion cells projecting to the retino-recipient zone of the ventral SCN. The PACAP/glutamate-containing cells, which constitute the RHT, also contain a recently identified photoreceptor protein, melanopsin, which may function as a "circadian photopigment". In vivo and in vitro studies have shown that glutamate and glutamate agonists such as N-methyl- D-aspartate mimic light-induced phase shifts and that application of glutamate antagonists blocks light-induced phase shifts at subjective night indicating that glutamate mediates light signalling to the clock. PACAP in nanomolar concentrations has similar phase-shifting capacity as light and glutamate, whereas PACAP in micromolar concentrations modulates glutamate-induced phase shifts. Possible targets for PACAP and glutamate are the recently identified clock genes Per1 and Per2, which are induced in the SCN by light, glutamate and PACAP at night.  相似文献   

4.
MPer1 and mper2 are essential for normal resetting of the circadian clock   总被引:8,自引:0,他引:8  
Mammalian Per1 and Per2 genes are involved in the mechanism of the circadian clock and are inducible by light. A light pulse can evoke a change in the onset of wheel-running activity in mice by shifting the onset of activity to earlier times (phase advance) or later times (phase delays) thereby advancing or delaying the clock (clock resetting). To assess the role of mouse Per (mPer) genes in circadian clock resetting, mice carrying mutant mPer1 or mPer2 genes were tested for responses to a light pulse at ZT 14 and ZT 22, respectively. The authors found that mPer1 mutants did not advance and mPer2 mutants did not delay the clock. They conclude that the mammalian Per genes are not only light-responsive components of the circadian oscillator but also are involved in resetting of the circadian clock.  相似文献   

5.
Resetting mechanism of central and peripheral circadian clocks in mammals   总被引:15,自引:0,他引:15  
  相似文献   

6.
7.

Background

Neuropeptides are critical integrative elements within the central circadian clock in the suprachiasmatic nucleus (SCN), where they mediate both cell-to-cell synchronization and phase adjustments that cause light entrainment. Forward peptidomics identified little SAAS, derived from the proSAAS prohormone, among novel SCN peptides, but its role in the SCN is poorly understood.

Methodology/Principal Findings

Little SAAS localization and co-expression with established SCN neuropeptides were evaluated by immunohistochemistry using highly specific antisera and stereological analysis. Functional context was assessed relative to c-FOS induction in light-stimulated animals and on neuronal circadian rhythms in glutamate-stimulated brain slices. We found that little SAAS-expressing neurons comprise the third most abundant neuropeptidergic class (16.4%) with unusual functional circuit contexts. Little SAAS is localized within the densely retinorecipient central SCN of both rat and mouse, but not the retinohypothalamic tract (RHT). Some little SAAS colocalizes with vasoactive intestinal polypeptide (VIP) or gastrin-releasing peptide (GRP), known mediators of light signals, but not arginine vasopressin (AVP). Nearly 50% of little SAAS neurons express c-FOS in response to light exposure in early night. Blockade of signals that relay light information, via NMDA receptors or VIP- and GRP-cognate receptors, has no effect on phase delays of circadian rhythms induced by little SAAS.

Conclusions/Significance

Little SAAS relays signals downstream of light/glutamatergic signaling from eye to SCN, and independent of VIP and GRP action. These findings suggest that little SAAS forms a third SCN neuropeptidergic system, processing light information and activating phase-shifts within novel circuits of the central circadian clock.  相似文献   

8.
A single 2h light pulse (250 lux) was given at various times to phase shift the locomotor circadian rhythm of two species of closely related cockroaches, Blattella bisignata and Blatella germanica. The phase-response curve (PRC) of both species showed a similar pattern. Phase delays and advances were induced by light pulse during the early and late subjective night, respectively, while no clear phase shifting was elicited during the subjective day. However, the magnitude of the phase delay (1.89h +/- 0.66h) and advance (0.69h +/- 0.36h) of B. bisignata was significantly larger than that of B. germanica (0.78h +/- 0.38h and 0.35h +/- 0.18h, respectively). This result indicates the superior adjustability of the circadian clock in B. bisignata. The period-response curve (PdRC) was also constructed for both species. Although both species did not show great flexibility in circadian period changes, the phase shifts were significantly correlated with the period changes in the advance zone of B. bisignata (r = 0.72, P < .1). This allowed the circadian clock of B. bisignata to display better entrainability since the phase advance adjustment was significantly more difficult than that of phase delay. The results indicate the overall adjustability of the circadian clock of B. germanica is inferior to that of B. bisignata. The significance of this finding is discussed from an ecological perspective.  相似文献   

9.
The suprachiasmatic nucleus (SCN) contains a biological clock that generates timing signals that drive daily rhythms in behaviors and homeostatic functions. In addition to this pacemaker function, the SCN gates its own sensitivity to incoming signals, which permits appropriate temporal adjustment to achieve synchrony with environmental and organismic states. A series of time-domains, in which the SCN restricts its own sensitivity to a limited set of stimuli that adjust clock phase, can be distinguished. Pituitary adenylyl cyclase-activating peptide (PACAP) and cAMP directly reset clock phase during the daytime domain; both cause phase advances only during the clock's day-time domain, but are without effect at night. In contrast, acetylcholine and cGMP analogs phase advance the clock only when applied during the night. Sensitivity to light and glutamate arises concomitant with sensitivity to acetylcholine and cGMP. Light and glutamate cause phase delays in the early night, by elevating intracellular Ca(2+) via neuronal ryanodine receptors. In late night, light and glutamate utilize a cGMP-mediated mechanism to induce phase advances. Nocturnal responses of SCN primed by light or glutamate can be modulated by effectors of phase-resetting in daytime, namely, PACAP and cAMP. Finally, the dusk and dawn domains are characterized by sensitivity to the pineal hormone, melatonin, acting through protein kinase C. These changing patterns of sensitivities demonstrate that the circadian clock controls multiple intracellular gates, which ensures that they can be opened selectively only at specific points in the circadian cycle. Discerning the molecular bases of these changes is fundamental to understanding integrative and regulatory mechanisms in the circadian system.  相似文献   

10.
11.
Circadian rhythms are generated by an internal biological clock. The suprachiasmatic nucleus (SCN) in the hypothalamus is known to be the dominant biological clock regulating circadian rhythms in mammals. In birds, two nuclei, the so-called medial SCN (mSCN) and the visual SCN (vSCN), have both been proposed to be the avian SCN. However, it remains an unsettled question which nuclei are homologous to the mammalian SCN. We have identified circadian clock genes in Japanese quail and demonstrated that these genes are expressed in known circadian oscillators, the pineal and the retina. Here, we report that these clock genes are expressed in the mSCN but not in the vSCN in Japanese quail, Java sparrow, chicken, and pigeon. In addition, mSCN lesions eliminated or disorganized circadian rhythms of locomotor activity under constant dim light, but did not eliminate entrainment under light-dark (LD) cycles in pigeon. However, the lesioned birds became completely arrhythmic even under LD after the pineal and the eye were removed. These results indicate that the mSCN is a circadian oscillator in birds.  相似文献   

12.
The retinohypothalamic tract (RHT), a monosynaptic retinal projection to the SCN, is the major path by which light entrains the circadian system to the external photoperiod. The circadian system of rodents effectively integrates or counts photons, and the magnitude of the rhythm phase response is proportional to the total energy of the photic stimulus. In the present studies, responsiveness to light and integrative capacity of the circadian system were tested in hamsters after reduction of retinal photoreceptor input by 50%. At CT 19, animals in constant darkness with or without unilateral retinal occlusion were exposed to 1 of 6 irradiances of 5-min white-light pulses ranging from 0.0011 to 70 microW/cm(2) or 5 white-light pulses of 0.6 microW/cm(2) with durations ranging from 0.25 to 150.0 min. Assessment of light-induced circadian rhythm phase response and Fos expression in the SCN by these animals revealed that a 50% reduction in input from photoreceptors stimulated directly with light caused a decrease in responsiveness to the longest duration and highest irradiance pulses presented. Despite this effect, both the magnitude of Fos induction in the SCN and phase-shift response remained directly proportional to the total energy in the photic stimuli. The results support the view that a reciprocal relationship between stimulus irradiance and duration persists despite the 50% reduction in retinal photoreceptor input. The mechanism of integration neither resides in the retina nor in the RHT.  相似文献   

13.
The light sensing system in the eye directly affects the circadian oscillator in the mammalian suprachiasmatic nucleus (SCN). To investigate this relationship in the rat, we examined the circadian expression of clock genes in the SCN and eye tissue during a 24 h day/night cycle. In the SCN, rPer1 and rPer2 mRNAs were expressed in a clear circadian rhythm like rCry1 and rCry2 mRNAs, whereas the level of BMAL1 and CLOCK mRNAs decreased during the day and increased during the night with a relatively low amplitude. It seems that the clock genes of the SCN may function in response to a master clock oscillation in the rat. In the eye, the rCry1 and rCry2 were expressed in a circadian rhythm with an increase during subjective day and a decrease during subjective night. However, the expression of Opn4 mRNA did not exhibit a clear circadian pattern, although its expression was higher in daytime than at night. This suggests that cryptochromes located in the eye, rather than melanopsin, are the major photoreceptive system for synchronizing the circadian rhythm of the SCN in the rat.  相似文献   

14.
Acute light exposure suppresses circadian rhythms in clock gene expression   总被引:1,自引:0,他引:1  
Light can induce arrhythmia in circadian systems by several weeks of constant light or by a brief light stimulus given at the transition point of the phase response curve. In the present study, a novel light treatment consisting of phase advance and phase delay photic stimuli given on 2 successive nights was used to induce circadian arrhythmia in the Siberian hamster ( Phodopus sungorus). We therefore investigated whether loss of rhythms in behavior was due to arrhythmia within the suprachiasmatic nucleus (SCN). SCN tissue samples were obtained at 6 time points across 24 h in constant darkness from entrained and arrhythmic hamsters, and per1, per2 , bmal1, and cry1 mRNA were measured by quantitative RT-PCR. The light treatment eliminated circadian expression of clock genes within the SCN, and the overall expression of these genes was reduced by 18% to 40% of entrained values. Arrhythmia in per1, per2, and bmal1 was due to reductions in the amplitudes of their oscillations. We suggest that these data are compatible with an amplitude suppression model in which light induces singularity in the molecular circadian pacemaker.  相似文献   

15.
16.
The suprachiasmatic nuclei of the hypothalamus contain the major circadian pacemaker in mammals, driving circadian rhythms in behavioral and physiological functions. This circadian pacemaker's responsiveness to light allows synchronization to the light-dark cycle. Phase shifting by light often involves several transient cycles in which the behavioral activity rhythm gradually shifts to its steady-state position. In this article, the authors investigate in Syrian hamsters whether a phase-advancing light pulse results in immediate shifts of the PRC at the next circadian cycle. In a first series of experiments, the authors aimed a light pulse at CT 19 to induce a phase advance. It appeared that the steady-state phase advances were highly correlated with activity onset in the first and second transient cycle. This enabled them to make a reliable estimate of the steady-state phase shift induced by a phase-advancing light pulse on the basis of activity onset in the first transient cycle. In the next series of experiments, they presented a light pulse at CT 19, which was followed by a second light pulse aimed at the delay zone of the PRC on the next circadian cycle. The immediate and steady-state phase delays induced by the second light pulse were compared with data from a third experiment in which animals received a phase-delaying light pulse only. The authors observed that the waveform of the phase-delay part of the PRC (CT 12-16) obtained in Experiment 2 was virtually identical to the phase-delay part of the PRC for a single light pulse (obtained in Experiment 3). This finding allowed for a quantitative assessment of the data. The analysis indicates that the delay part of the PRC-between CT 12 and CT 16-is rapidly reset following a light pulse at CT 19. These findings complement earlier findings in the hamster showing that after a light pulse at CT 19, the phase-advancing part of the PRC is immediately shifted. Together, the data indicate that the basis for phase advancing involves rapid resetting of both advance and delay components of the PRC.  相似文献   

17.
The indolamine melatonin is an important rhythmic endocrine signal in the circadian system. Exogenous melatonin can entrain circadian rhythms in physiology and behavior, but the role of endogenous melatonin and the two membrane-bound melatonin receptor types, MT1 and MT2, in reentrainment of daily rhythms to light-induced phase shifts is not understood. The present study analyzed locomotor activity rhythms and clock protein levels in the suprachiasmatic nuclei (SCN) of melatonin-deficient (C57BL/6J) and melatonin-proficient (C3H/HeN) mice, as well as in melatonin-proficient (C3H/HeN) mice with targeted deletion of the MT1, MT2, or both receptors, to determine effects associated with phase delays or phase advances of the light/dark (LD) cycle. In all mouse strains and genotypes, reentrainment of locomotor activity rhythms was significantly faster after a 6-h phase delay than a 6-h phase advance. Reentrainment after the phase advance was, however, significantly slower than in melatonin-deficient animals and in mice lacking functional MT2 receptors than melatonin-proficient animals with intact MT2 receptors. To investigate whether these behavioral differences coincide with differences in reentrainment of clock protein levels in the SCN, mPER1, mCRY1 immunoreactions were compared between control mice kept under the original LD cycle and killed at zeitgeber time 04 (ZT04) or at ZT10, respectively, and experimental mice subjected to a 6-h phase advance of the LD cycle and sacrificed at ZT10 on the third day after phase advance. This ZT corresponds to ZT04 of the original LD cycle. Under the original LD cycle, the numbers of mPER1- and mCRY1-immunoreactive cell nuclei were low at ZT04 and high at ZT10 in the SCN of all mouse strains and genotypes investigated. Notably, mouse strains with intact melatonin signaling and functional MT2 receptors showed a significant increase in the number of mPER1- and mCRY1-immunoreactive cell nuclei at the new ZT10 as compared to the former ZT04. These data suggest the endogenous melatonin signal facilitates reentrainment of the circadian system to phase advances on the level of the SCN molecular clockwork by acting upon MT2 receptors.  相似文献   

18.
The master circadian clock in mammals is located in the hypothalamic suprachiasmatic nuclei (SCN) and is synchronized by several environmental stimuli, mainly the light-dark (LD) cycle. Light pulses in the late subjective night induce phase advances in locomotor circadian rhythms and the expression of clock genes (such as Per1-2). The mechanism responsible for light-induced phase advances involves the activation of guanylyl cyclase (GC), cGMP and its related protein kinase (PKG). Pharmacological manipulation of cGMP by phosphodiesterase (PDE) inhibition (e.g., sildenafil) increases low-intensity light-induced circadian responses, which could reflect the ability of the cGMP-dependent pathway to directly affect the photic sensitivity of the master circadian clock within the SCN. Indeed, sildenafil is also able to increase the phase-shifting effect of saturating (1200 lux) light pulses leading to phase advances of about 9 hours, as well as in C57 a mouse strain that shows reduced phase advances. In addition, sildenafil was effective in both male and female hamsters, as well as after oral administration. Other PDE inhibitors (such as vardenafil and tadalafil) also increased light-induced phase advances of locomotor activity rhythms and accelerated reentrainment after a phase advance in the LD cycle. Pharmacological inhibition of the main downstream target of cGMP, PKG, blocked light-induced expression of Per1. Our results indicate that the cGMP-dependent pathway can directly modulate the light-induced expression of clock-genes within the SCN and the magnitude of light-induced phase advances of overt rhythms, and provide promising tools to design treatments for human circadian disruptions.  相似文献   

19.
Serotonin (5-HT) can act presynaptically at 5-HT1B receptors on retinal terminals in the suprachiasmatic nucleus (SCN) to inhibit glutamate release, thereby modulating the effects of light on circadian behavior. 5-HT1B receptor agonists (1) inhibit light-induced phase shifts of circadian activity rhythms, (2) attenuate light-induced Fos expression in the SCN, and (3) reduce the amplitude of optic nerve-evoked excitatory postsynaptic currents in SCN neurons in vitro. To determine whether functional disruption of the 5-HT1B presynaptic receptors would result in an amplified response of the SCN to light, the period (tau) of the circadian rhythm of wheel-running activity was estimated under several different conditions in 5-HT1B receptor knockout (KO) mice and genetically matched wild-type animals. Under constant light (LL) conditions, the tau of 5-HT1B receptor KO mice was significantly greater than the tau of wild-type mice. A quantitative analysis of the wheel-running activity revealed no differences between wild-type and KO mice in either total activity or the temporal distribution of activity under LL conditions, suggesting that the observed increase in tau was not a function of reduced activity. Under constant dark conditions, the period of the circadian rhythm of wheel-running activity of wild-type and 5-HT1B receptor KO mice was similar. In addition, no differences were noted between wild-type and 5-HT1B receptor KO mice in the rate of reentrainment to a 6 h phase advance in the 12:12 light:dark cycle or in phase shifts in response to a 10 min light pulse presented at circadian time 16. The enhanced response of the SCN circadian clock of the 5-HT1B receptor KO mice to LL conditions is consistent with the hypothesis that the endogenous activation of 5-HT1B presynaptic receptors modulates circadian behavior by attenuating photic input to the SCN.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号