首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One important issue related to Hepatitis C virus (HCV) RNA nucleic acid amplification testing (NAT) is the storage conditions of plasma samples in order to obtain reliable results. Many authors have reported that the storage conditions could affect the RNA stability and, hence, HCV RNA detection. We have studied HCV RNA stability in plasma samples after storage at different temperatures (-70, -20, 5 and 25 degrees C). Samples containing different HCV titres were stored and analysed by qualitative or quantitative NAT techniques at defined time points. At -20 degrees C, samples containing high HCV RNA titres were followed-up during approximately 2.6-2.7 years, samples with intermediate concentrations during approximately 1 year and samples with 100 International Units/millilitre (IU/ml) during 2.5 years. Independently of the HCV RNA concentration, the results show absence of decay in HCV RNA detectability. Samples stored at 25 degrees C maintain their HCV RNA titre during 14 days and samples at 5 degrees C were stable for at least 3 months.  相似文献   

2.
Resolution of chronic hepatitis C is considered when serum HCV RNA becomes repeatedly undetectable and liver enzymes normalize. However, long-term persistence of HCV following therapy with pegylated interferon-α/ribavirin (PegIFN/R) was reported when more sensitive assays and testing of serial plasma, lymphoid cells (PBMC) and/or liver biopsies was applied. Our aim was to reassess plasma and PBMCs collected during and after standard PegIFN/R therapy from individuals who became HCV RNA nonreactive by clinical testing. Of particular interest was to determine if HCV genome and its replication remain detectable during ongoing treatment with PegIFN/R when evaluated by more sensitive detection approaches. Plasma acquired before (n = 11), during (n = 25) and up to 12–88 weeks post-treatment (n = 20) from 9 patients and PBMC (n = 23) from 3 of them were reanalyzed for HCV RNA with sensitivity <2 IU/mL. Clone sequencing of the HCV 5′-untranslated region from plasma and PBMCs was done in 2 patients. HCV RNA was detected in 17/25 (68%) plasma and 8/10 (80%) PBMC samples collected from 8 of 9 patients during therapy, although only 5.4% plasma samples were positive by clinical assays. Among post-treatment HCV RNA-negative plasma samples, 9 of 20 (45.3%) were HCV reactive for up to 59 weeks post-treatment. Molecularly evident replication was found in 6/12 (50%) among PBMC reactive for virus RNA positive strand collected during or after treatment. Pre-treatment point mutations persisted in plasma and/or PBMC throughout therapy and follow-up. Therefore, HCV is not completely cleared during ongoing administration of PegIFN/R otherwise capable of ceasing progression of CHC and virus commonly persists at levels not detectable by the current clinical testing. The findings suggest the need for continued evaluation even after patients achieve undetectable HCV RNA post-treatment.  相似文献   

3.
Cell-based hepatitis C virus (HCV) replicon systems have provided a means for understanding HCV replication mechanisms and for testing new antiviral agents. We describe here a mathematical model of HCV replication that assumes that the translation of the HCV polyprotein occurs in the cytoplasm, that HCV RNA synthesis occurs in vesicular-membrane structures, and that the strategy of replication involves a double-stranded RNA intermediate. Our results shed light on the intracellular dynamics of subgenomic HCV RNA replication from transfection to steady state within Huh-7 cells. We predict the following: (i) about 6 x 10(3) ribosomes are involved in generating millions of HCV NS5B-polymerase molecules in a Huh-7 cell, (ii) the observed 10:1 asymmetry of plus- to minus-strand RNA levels can be explained by a higher-affinity (200-fold) interaction of HCV NS5B polymerase-containing replication complexes with HCV minus-strand RNA over HCV plus-strand RNA in order to initiate synthesis, (iii) the latter higher affinity can also account for the observed approximately 6:1 plus-strand/minus-strand ratio in vesicular-membrane structures, and (iv) the introduction of higher numbers of HCV plus-strand RNA by transfection leads to faster attainment of steady-state but does not change the steady-state HCV RNA level. Fully permissive HCV replication systems have been developed, and the model presented here is a first step toward building a comprehensive model for complete HCV replication. Moreover, the model can serve as an important tool in understanding HCV replication mechanisms and should prove useful in designing and evaluating new antivirals against HCV.  相似文献   

4.
Hepatitis C virus (HCV) frequently causes chronic hepatitis, while spontaneous recovery from infection is infrequent. Persistence of HCV after self-limited (spontaneous) resolution of hepatitis C was rarely investigated. The current study aimed to assess incidence and robustness of HCV persistence after self-resolved hepatitis C in individuals with normal liver enzymes and undetectable virus by conventional tests. Applying high sensitivity HCV RNA detection approaches, we analyzed plasma and peripheral blood mononuclear cells (PBMC) from individuals with previous hepatitis C infection. Parallel plasma and PBMC from 24 such non-viraemic individuals followed for 0.3–14.4 (mean 6.4) years were examined. Additional samples from 9 of them were obtained 4.5–7.2 (mean 5.9) years later. RNA was extracted from 250 μl plasma and, if HCV negative, from ~5 ml after ultracentrifugation, and from ex vivo stimulated PBMC. PBMC with evidence of HCV replication from 4 individuals were treated with HCV protease inhibitor, telaprevir. HCV RNA was detected in 14/24 (58.3%) plasma and 11/23 (47.8%) PBMC obtained during the first collection. HCV RNA replicative strand was evident in 7/11 (63.6%) PBMC. Overall, 17/24 (70.8%) individuals carried HCV RNA at mean follow-up of 5.9 years. Samples collected 4.5–7.2 years later revealed HCV in 4/9 (44.4%) plasma and 5/9 (55.5%) PBMC, while 4 (80%) of these 5 PBMC demonstrated virus replicative strand. Overall, 6/9 (66.7%) individuals remained viraemic for up to 20.7 (mean 12.7) years. Telaprevir entirely eliminated HCV replication in the PBMC examined. In conclusion, our results indicate that HCV can persist long after spontaneous resolution of hepatitis C at levels undetectable by current testing. An apparently effective host immune response curtailing hepatitis appears insufficient to completely eliminate the virus. The long-term morbidity of asymptomatic HCV carriage should be examined even in individuals who achieve undetectable HCV by standard testing and their need for treatment should be assessed.  相似文献   

5.
The introduction of routine testing to detect viral genomes in donated blood was originally driven by requirements for plasma fractionation in relation to exclusion of hepatitis C virus (HCV) RNA. Nevertheless, it was obvious from the outset that a dual standard for fractionated products and individual blood components would be untenable. In many countries therefore, planning for introduction of nucleic acid testing (NAT) of blood incorporated progression to release of HCV RNA tested components. HCV was singled out because of its long seronegative 'window period', relatively high prevalence and incidence in blood donors, rapid burst time and high genome copy number during seroconversion. The latter properties made HCV particularly suitable for detection in pools of samples. If HCV RNA testing is required for release of labile components such as platelets, rapid provision of NAT results is vital because of short shelf life of platelets and the problems of delays when resolving the infectious unit in a reactive pool. For NAT release of labile components smaller sample pool sizes allow faster resolution of RNA positive units. Smaller pools involve high test throughput, the likely need for more testing laboratories and ensuing increased costs. Single sample testing is the ultimate extrapolation of reducing sample pool size. With reduced pool sizes or single sample testing, the option of testing for other viruses (e.g. HIV or HBV) singly or in multiplex also arises. The cost-benefit and incremental yield of such strategies in the light of 'combo' assays for HIV Ag/Ab and the recently described HCV Ag assay will require careful and objective assessment, together with re-appraisal of anti-HBc screening for detection of HBV infected donors at the "tail-end" of carriage.  相似文献   

6.
Cell-free replication of the hepatitis C virus subgenomic replicon   总被引:2,自引:0,他引:2       下载免费PDF全文
Ali N  Tardif KD  Siddiqui A 《Journal of virology》2002,76(23):12001-12007
The hepatitis C virus (HCV) contains a plus-strand RNA genome. The 5' noncoding region (NCR) of the viral genome functions as an internal ribosome entry site, and its unique 3' NCR is required for the assembly of the replication complex during initiation of HCV RNA replication. Lohmann et al. (V. Lohmann, F. Korner, J.-O. Koch, U. Herian, L. Theilman, and R. Batenschlager, Science 285:110-113, 1999) developed a subgenomic HCV replicon system, which represents an important tool in studying HCV replication in cultured cells. In this study, we describe a cell-free replication system that utilizes cytoplasmic lysates prepared from Huh-7 cells harboring the HCV subgenomic replicons. These lysates, which contain ribonucleoprotein complexes associated with cellular membranes, were capable of incorporating [alpha(32)P]CTP into newly synthesized RNA from subgenomic replicons in vitro. Replicative forms (RFs) and replicative intermediates (RIs) were synthesized from the endogenous HCV RNA templates. Consistent with previous observations, RFs were found to be resistant to RNase A digestion, whereas RIs were sensitive to RNase treatment. The radiolabeled HCV RF-RI complexes contained both minus and plus strands and were specific to the lysates derived from replicon-expressing cells. The availability of a cell-free replication system offers opportunities to probe the mechanism(s) of HCV replication. It also provides a novel assay for potential therapeutic agents.  相似文献   

7.
Redox regulation of hepatitis C in nonalcoholic and alcoholic liver   总被引:1,自引:0,他引:1  
Hepatitis C virus (HCV) is an RNA virus of the Flaviviridae family that is estimated to have infected 170 million people worldwide. HCV can cause serious liver disease in humans, such as cirrhosis, steatosis, and hepatocellular carcinoma. HCV induces a state of oxidative/nitrosative stress in patients through multiple mechanisms, and this redox perturbation has been recognized as a key player in HCV-induced pathogenesis. Studies have shown that alcohol synergizes with HCV in the pathogenesis of liver disease, and part of these effects may be mediated by reactive species that are generated during hepatic metabolism of alcohol. Furthermore, reactive species and alcohol may influence HCV replication and the outcome of interferon therapy. Alcohol consumption has also been associated with increased sequence heterogeneity of the HCV RNA sequences, suggesting multiple modes of interaction between alcohol and HCV. This review summarizes the current understanding of oxidative and nitrosative stress during HCV infection and possible combined effects of HCV, alcohol, and reactive species in the pathogenesis of liver disease.  相似文献   

8.
Polypyrimidine tract-binding protein (PTB) has been previously shown to physically interact with the hepatitis C virus (HCV) RNA genome at its 5'- and 3'-noncoding regions. Using high affinity SELEX RNA molecules, we present evidence for the functional requirement of PTB during HCV internal ribosome entry site (IRES)-controlled translation initiation. This study was carried out in rabbit reticulocyte translation lysates in which the HCV IRES-driven reporter RNA was introduced along with the PTB-specific SELEX RNA molecules. The SELEX RNAs specifically inhibited the HCV IRES function in the context of mono- and dicistronic mRNAs. The cap-dependent translation of a reporter (chloramphenicol acetyltransferase) RNA or naturally capped brome mosaic virus RNA, however, was not affected by the presence of SELEX during in vitro translation assays. The SELEX-mediated inhibition of the HCV IRES is shown to be relieved by the addition of recombinant human PTB in an add-back experiment. The in vivo requirement of PTB was further confirmed by cotransfection of Huh7 cells with reporter RNA and PTB-specific SELEX RNA. The HCV IRES activity was inhibited by the SELEX RNA in these cells, but not by an unrelated control RNA. Together, these results demonstrate the functional requirement of cellular PTB in HCV translation and further support the feasible use of SELEX RNA strategy in demonstrating the functional relevance of cellular protein(s) in complex biological processes.  相似文献   

9.
The significance of co-infections with novel hepatitis viruses Hepatitis G (GBV-C, HGV) and TT virus (TTV) in chronic hepatitis C is not clear. We determined the prevalence of HGV RNA and TTV DNA in chronic hepatitis C patients and in asymptomatic hepatitis C virus (HCV) carriers, and assessed the influence of these agents on the course of HCV infection. Seventy-seven patients with chronic hepatitis C--50 of them treated with interferon (IFN)--and 33 HCV carriers with normal alanine aminotransferase have been investigated. Previous HBV infection was detected by testing serum HBsAg and aHBc. HGV RNA and TTV DNA were detected by PCR. In the healthy population, the prevalence of anti-HCV was 0.3%, HGV RNA 8.0% and TTV DNA 18.5%. In chronic hepatitis C HGV RNA occurred in 9.09% and TTV DNA in 40.25% of cases. In IFN-treated patients with sustained remission, the frequency of TTV was 20% vs. 45.7% found in non-responders. Among asymptomatic HCV-carriers, the prevalence of HGV RNA was 9.09% and TTV DNA 75.7%. Neither HGV RNA nor TTV DNA had apparent effect on the HCV infection. TTV was detected with the lowest frequency in persons with sustained remission due to IFN, suggesting antiviral effect of IFN on TTV.  相似文献   

10.
RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae   总被引:1,自引:0,他引:1  
RNA chaperone proteins are essential partners of RNA in living organisms and viruses. They are thought to assist in the correct folding and structural rearrangements of RNA molecules by resolving misfolded RNA species in an ATP-independent manner. RNA chaperoning is probably an entropy-driven process, mediated by the coupled binding and folding of intrinsically disordered protein regions and the kinetically trapped RNA. Previously, we have shown that the core protein of hepatitis C virus (HCV) is a potent RNA chaperone that can drive profound structural modifications of HCV RNA in vitro. We now examined the RNA chaperone activity and the disordered nature of core proteins from different Flaviviridae genera, namely that of HCV, GBV-B (GB virus B), WNV (West Nile virus) and BVDV (bovine viral diarrhoea virus). Despite low-sequence similarities, all four proteins demonstrated general nucleic acid annealing and RNA chaperone activities. Furthermore, heat resistance of core proteins, as well as far-UV circular dichroism spectroscopy suggested that a well-defined 3D protein structure is not necessary for core-induced RNA structural rearrangements. These data provide evidence that RNA chaperoning—possibly mediated by intrinsically disordered protein segments—is conserved in Flaviviridae core proteins. Thus, besides nucleocapsid formation, core proteins may function in RNA structural rearrangements taking place during virus replication.  相似文献   

11.
Demographic information and laboratory test results on 136 169 clinical serum specimens submitted to the public health laboratory in Manitoba, Canada, for hepatitis C virus (HCV) testing between January 1995 and December 2003 were analyzed. The difference in the clearance rates of HCV infection, without therapeutic intervention, and the HCV genotypes infecting First Nation and non-First Nation people were studied. The rates of co-infection of HCV-positive individuals with other hepatitis viruses were also compared between the two study groups. The results of the analyses of the data indicated that there was a 4.4-fold increase in the number of specimens tested and a 4.9-fold decrease in HCV antibody (anti-HCV) positive cases during the study period. The proportion of specimens submitted for testing from First Nation individuals was lower than their proportion in the Manitoba population. Our study also indicated that there was a significantly higher proportion of First Nation patients who had self-limiting infection (patients cleared the infection and became HCV RNA negative without anti-HCV treatment) in comparison to non-First Nation patients. The proportion of First Nation females who had self-limiting infection was significantly higher than non-First Nation females. HCV genotype 1 infection represented more than 60% of HCV infection in Manitoba. The rate of individuals positive for the hepatitis A virus antibody in the HCV-positive population was higher among First Nation than non-First Nation individuals. On the other hand, there were more HCV-infected First Nation patients than non-First Nation patients who were not immune to the hepatitis B virus. The data indicate that fewer First Nation patients seek anti-HCV therapy in comparison to non-First Nation. In conclusion, the differences in the rates of HCV self-limiting infection between First Nation and non-First Nation individuals in Manitoba may reflect the genetic differences between the two cohorts, which may consequently affect the immune response to the HCV infection.  相似文献   

12.
The hepatitis C virus (HCV) production system consists of transfecting the human hepatoma cell line Huh7 with genomic HCV RNA (JFH1). To monitor HCV replication by fluorescence microscopy, we constructed a recombinant HCV clone expressing Azami-Green (mAG), a bright green fluorescent protein, by inserting the mAG gene into the nonstructural protein 5A (NS5A) gene; the resultant clone was designated JFH1-hmAG. The Huh-7.5.1 (a subclone of Huh7) cells transfected with JFH1-hmAG RNA were found to produce cytoplasmic NS5A-mAG, as readily visualized by fluorescence microscopy, and infectious virus, as assayed with the culture supernatant, indicating that JFH1-hmAG is infectious and replication-competent. Furthermore, the replication of this virus was inhibited by interferon alpha in a dose-dependent manner. These results suggest that JFH1-hmAG is useful for studying HCV life cycle and the mechanism of interferon’s anti-HCV action and for screening and testing new anti-HCV drugs.  相似文献   

13.
The hepatitis C virus (HCV) is an important human pathogen causing chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV is an enveloped virus with a positive-sense, single-stranded RNA genome encoding a single polyprotein that is processed to generate viral proteins. Several hundred molecules of the structural Core protein are thought to coat the genome in the viral particle, as do nucleocapsid (NC) protein molecules in Retroviruses, another class of enveloped viruses containing a positive-sense RNA genome. Retroviral NC proteins also possess nucleic acid chaperone properties that play critical roles in the structural remodelling of the genome during retrovirus replication. This analogy between HCV Core and retroviral NC proteins prompted us to investigate the putative nucleic acid chaperoning properties of the HCV Core protein. Here we report that Core protein chaperones the annealing of complementary DNA and RNA sequences and the formation of the most stable duplex by strand exchange. These results show that the HCV Core is a nucleic acid chaperone similar to retroviral NC proteins. We also find that the Core protein directs dimerization of HCV (+) RNA 3' untranslated region which is promoted by a conserved palindromic sequence possibly involved at several stages of virus replication.  相似文献   

14.
Ultrastructural observations in hepatitis C virus-infected lymphoid cells   总被引:3,自引:0,他引:3  
It is currently unclear whether the hepatocellular damage in chronic hepatitis C virus (HCV) infection is produced through the intrahepatic action of the anti-HCV immune response or through a direct cytopathic effect. In order to investigate the features of HCV replication (morphogenesis and cytopathic effect), we studied the infection of a permissive lymphocytic B cell line, Daudi cells, which were infected with sera of HCV-positive patients, and were examined after various time points under electron microscope. Viral genomic RNA was detected by in situ hybridization, and apoptosis with the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method. The amount of viral genomic RNA was observed to increase during infection. HCV replicated rapidly, since characteristics of viral morphogenesis resembling those of yellow fever virus in a hepatoma cell line could be found 2 days after infection. These included the following: a) several viral particles identical in size (about 42 nm) and structure (a spherical 30-nm-sized electron-dense nucleocapsid surrounded by a membrane) to yellow fever virus were present in the cytoplasm of cells displaying already typical signs of the early stage of apoptosis; b) numerous membrane-bound organelles and in particular the endoplasmic reticulum and vacuoles were observed; c) proliferation of membranes was apparent; and d) intracytoplasmic electron-dense inclusion bodies which have been demonstrated to correspond to nucleocapsids for other flaviviruses were detected. Several cells presented electron-dense areas in the endoplasmic reticulum displaying 30-nm circular structures lying among an amorphous material. Striking cytopathic features with ballooning, extremely enlarged vacuoles and signs of apoptosis were found in cells often containing sequestered aggregates of virus-like particles. By in situ hybridization we found that such enlarged cells contained HCV RNA. Our results thus indicate that the ultrastructural features of HCV viral particles and their morphogenesis resemble that of yellow fever virus and dengue virus. In Daudi cells, HCV infection seems to rapidly trigger apoptotic cell death, and efficient release of viral particles does not seem to take place.  相似文献   

15.
The development of effective hepatitis C virus (HCV) vaccines is essential for the prevention of further HCV dissemination, especially in developing countries. Therefore the aim of this study is to establish a feasible and immunocompetent surrogate animal model of HCV infection that will help in evaluation of the protective efficacy of newly developing HCV vaccine candidates. To circumvent the narrow host range of HCV, an HCV genotype 1b‐based chimeric clone carrying E1, E2 and p6 regions from GB virus B (GBV‐B), which is closely related to HCV, was generated. The chimera between HCV and GBV‐B, named HCV/G, replicated more efficiently as compared with the HCV clone in primary marmoset hepatocytes. Furthermore, it was found that the chimera persistently replicated in a tamarin for more than 2 years after intrahepatic inoculation of the chimeric RNA. Although relatively low (<200 copies/mL), the viral RNA loads in plasma were detectable intermittently during the observation period. Of note, the chimeric RNA was found in the pellet fraction obtained by ultracentrifugation of the plasma at 73 weeks, indicating production of the chimeric virus. Our results will help establish a novel non‐human primate model for HCV infection on the basis of the HCV/G chimera in the major framework of the HCV genome.  相似文献   

16.
Recently, a cDNA from the hepatitis C virus (HCV) RNA genome has been isolated in the USA from a chronically infected chimpanzee. In order to isolate HCV cDNA derived from human material, RNA was extracted from plasma of a Japanese blood donor implicated in post-transfusion non-A, non-B hepatitis and HCV cDNA was synthesized and amplified by the PCR method using HCV-specific oligonucleotide primers. The cDNA fragment, 583 nucleotides long, showed 79.8% homology at the nucleotide level and 92.2% homology at the amino acid level compared with the prototype HCV cDNA. These results provides further evidence to show that HCV is closely associated with the development of post transfusion non-A, non-B hepatitis.  相似文献   

17.
应用ELISA和PCR法检测502例乙肝病人血清,401例HBsAg阳性血清中,有114例(28.4%)抗-HCV和HCVRNA双项阳性,25例(6.2%)HCVRNA单项阳性;21例(5.2%)抗-HCV单项阳性。将HBsAg乙肝病人分成HBVDNA,HBeAg阳性组和HBVDNA,HBeAg阴性组。前者抗-HCV阳性率为11.6%~20.5%,HCVRNA阳性率为16.2%~20.5%。后者抗-HCV阳性率为20.2%~55.6%,HCVRNA阳性率为23%~60.3%。结果说明长期携带HBV者和慢性乙肝病人均可重叠HCV感染。HBVDNA阳性组抗-HCV和HCVRNA阳性率明显高于HBVDNA阳性组  相似文献   

18.
19.
20.
The replication of the hepatitis C viral (HCV) genome is accomplished by the NS5B RNA-dependent RNA polymerase (RdRp), for which mechanistic understanding and structure-guided drug design efforts have been hampered by its propensity to crystallize in a closed, polymerization-incompetent state. The removal of an autoinhibitory β-hairpin loop from genotype 2a HCV NS5B increases de novo RNA synthesis by >100-fold, promotes RNA binding, and facilitated the determination of the first crystallographic structures of HCV polymerase in complex with RNA primer-template pairs. These crystal structures demonstrate the structural realignment required for primer-template recognition and elongation, provide new insights into HCV RNA synthesis at the molecular level, and may prove useful in the structure-based design of novel antiviral compounds. Additionally, our approach for obtaining the RNA primer-template-bound structure of HCV polymerase may be generally applicable to solving RNA-bound complexes for other viral RdRps that contain similar regulatory β-hairpin loops, including bovine viral diarrhea virus, dengue virus, and West Nile virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号