首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The alcohol dehydrogenase (ADH) family of enzymes catalyzes the reversible oxidation of alcohol to acetaldehyde. Seven ADH genes exist in a segment of ~370 kb on 4q21. Products of the three class I ADH genes that share 95% sequence identity are believed to play the major role in the first step of ethanol metabolism. Because the common belief that selection has operated at the ADH1B*47His allele in East Asian populations lacks direct biological or statistical evidence, we used genomic data to test the hypothesis. Data consisted of 54 single-nucleotide polymorphisms (SNPs) across the ADH clusters in a global sampling of 42 populations. Both the F(st) statistic and the long-range haplotype (LRH) test provided positive evidence of selection in several East Asian populations. The ADH1B Arg47His functional polymorphism has the highest F(st) of the 54 SNPs in the ADH cluster, and it is significantly above the mean F(st) of 382 presumably neutral sites tested on the same 42 population samples. The LRH test that uses cores including that site and extending on both sides also gives significant evidence of positive selection in some East Asian populations for a specific haplotype carrying the ADH1B*47His allele. Interestingly, this haplotype is present at a high frequency in only some East Asian populations, whereas the specific allele also exists in other East Asian populations and in the Near East and Europe but does not show evidence of selection with use of the LRH test. Although the ADH1B*47His allele conveys a well-confirmed protection against alcoholism, that modern phenotypic manifestation does not easily translate into a positive selective force, and the nature of that selective force, in the past and/or currently, remains speculative.  相似文献   

2.
Because some genes have been cloned that have a known biochemical or physiological function, genetic variation can be measured in a population at loci that may directly influence a phenotype of interest. With this measured genotype approach, specific alleles or haplotypes in the probed DNA region can be assigned phenotypic effects. In this paper we address several problems encountered in implementing the measured genotype approach with restriction site data. A number of analytical problems arise in part as a consequence of the linkage disequilibrium that is commonly encountered when dealing with small DNA regions: 1) different restriction site polymorphisms are not statistically independent, 2) the sites being measured are not likely to be the direct cause of the associated phenotypic effects, 3) haplotype classes may be phenotypically heterogeneous, and 4) the sites that are most strongly associated with phenotypic effects are not necessarily the most closely linked to the actual genetic cause of the effects. When recombination and gene conversion are rare, the primary cause of linkage disequilibrium is history (mutational origin, genetic drift, hitchhiking, etc.). We deal with historical association directly by producing a cladogram that partially reconstructs the evolutionary history of the present-day haplotype variability. The cladogram defines a nested analysis of variance that simultaneously detects phenotypic effects, localizes the effects within the cladogram, and identifies haplotypes that are potentially heterogeneous in their phenotypic associations. The power of this approach is illustrated by an analysis of the associations between alcohol dehydrogenase (ADH) activity and restriction site variability in a 13-kb fragment surrounding the ADH locus in Drosophila melanogaster.  相似文献   

3.
PON基因簇序列变异筛查研究   总被引:5,自引:0,他引:5  
摘要:系统筛查PON1、PON2及PON3基因编码、剪接及侧翼序列,以期发现所有潜在功能多态基因座,为进一步探讨PON基因家族与心血管疾病的关系做准备。随机选择48例冠心病患者作为筛查对象, 以PCR产物直接测序检测DNA序列变异。扩增片断涵盖整个外显子, 其两侧部分内含子区域及5’和3’侧翼序列。(1)13.9kb测序范围内共发现31个多态性基因座,均为单核甘酸多态(SNP),其中17个SNP为首次报道。(2)国人中SNP构成和等位基因频率与高加索人群存在显著差异。(3)一个基因内部两个或多个多态性基因座间存在完全或近乎完全连锁不平衡相当常见。中国汉族人群中PON基因簇多个潜在功能多态基因座的识别及这些基因座间的强连锁不平衡状态,为在国人中探讨PON基因簇与心血管疾病关系提供了重要的基础数据。  相似文献   

4.
Catechol-O-methyl transferase (COMT) catalyzes the first step in one of the major pathways in the degradation of catecholamines. The COMT gene on chromosome 22 has been considered a candidate gene for many neuropsychiatric disorders, in part because an exon 4 single nucleotide polymorphism (SNP) in COMT causes an amino acid substitution associated with significantly altered enzyme activity. This functional variant, detected as an NlaIII restriction site polymorphism (RSP), is polymorphic in populations from around the world. A four-site haplotype spanning 28 kb effectively encompasses COMT. This haplotype is comprised of two novel polymorphisms [a tetranucleotide short tandem repeat polymorphism (STRP) in intron 1 and a HindIII RSP at the 5' end of COMT], the NlaIII site, and another previously published site - a BglI RSP at the 3' end of the gene. Overall linkage disequilibrium (LD) for this haplotype is strong and significant in 32 population samples from around the world. Conditional probabilities indicate that, in spite of moderate to strong disequilibrium in most non-African populations, the NlaIII site, although often used for prediction, would not always be a reliable predictor of allelic variation at the other sites. Because other functional variation might exist, especially regulatory variation, these findings indicate that haplotypes would be more effective indicators of possible involvement of COMT in disease etiology.  相似文献   

5.
Summary Haplotypes of the apoprotein B gene, localised to chromosome 2, were identified using restriction fragment length polymorphisms (RFLPs) for the enzymes XbaI and EcoRI. Four haplotypes were identified at this locus, X1R1 (H1), X1R2 (H2), X2R1 (H3) and X2R2 (H4); where the X1 and X2 alleles were characterised by gene-related fragments of 5.0 and 8.6 kb respectively and the R1 and R2 alleles by fragments of 13.0 and 11.0 kb respectively. Although the polymorphic sites are less than 10 kb apart, they were found to be in linkage equilibrium. The value of the disequilibrium parameter (D) was 0.0042, approximately 7.5% of the theoretical maximum (Dmax=0.054). No disease association could be demonstrated between either apoB RFLP, or haplotype, and coronary athersclerosis in our population from south-east England. This was in accordance with a study of apoB RFLPs for a population from the West Coast of the United States, but in contrast to a study of an East-Coast population. There are no previous data for the association between apoB haplotypes and coronary atherosclerosis.  相似文献   

6.
One objective of quantitative genetics is to identify the nucleotide variants within genes that contribute to phenotypic variation and susceptibility [1]. In an evolutionary context, this means characterizing the molecular polymorphisms that modify the penetrance and expressivity of perturbed traits. A survey of association between 267 SNPs in almost 11 kb of the D. melanogaster Egfr and the degree of eye roughening due to a gain-of-function Egfr(E1) allele crossed into 210 isogenic wild-type lines provides evidence that a handful of synonymous substitutions supply cryptic variation for photoreceptor determination. Ten sites exceed Bonferroni threshold for association in two sets of crosses to different Egfr(E1) backgrounds including a particularly significant cluster of sites in tight linkage disequilibrium toward the 3' end of the coding region. Epistatic interaction of this cluster with one other site enhances the expressivity of this haplotype. Replication of the strongest associations with an independent sample of 302 phenotypically extreme individuals derived from 1000 crosses of Egfr(E1) to freshly trapped males was achieved using modified case-control and transmission-disequilibrium tests. A tendency for the rarer alleles to have more disrupted eye development suggests that mutation-selection balance is a possible mechanism contributing to maintaining cryptic variation for Egfr.  相似文献   

7.
The PCR was used to amplify genomic DNA from two microsatellite (dC-dA)n.(dG-dT)n sequences found to be present in the same chromosome 5 genomic clone. Analysis of the haplotype frequencies of these two interspersed repeat sequences in individuals showed strong allelic association or linkage disequilibrium. Six alleles were found for p599 (CA)n with a PIC value of 0.71 and 8 alleles were seen for lambda 599 (CA)n with a PIC value of 0.74. The two microsatellites are separated by approximately 7 kb. Analysis of the length variations for the two microsatellites showed that they were positively correlated, a finding that has no obvious explanation. The strong linkage disequilibrium found demonstrates stability during evolution for these novel markers. Therefore they should be powerful new tools for studying genetic drift and admixture of populations. Furthermore, disequilibrium data from microsatellites can be used in the fine mapping and cloning of disease genes.  相似文献   

8.
Because defects in the phenylalanine hydroxylase gene (PAH) cause phenylketonuria (PKU), PAH was studied for normal polymorphisms and linkage disequilibrium soon after the gene was cloned. Studies in the 1980s concentrated on European populations in which PKU was common and showed that haplotype-frequency variation exists between some regions of the world. In European populations, linkage disequilibrium generally was found not to exist between RFLPs at opposite ends of the gene but was found to exist among the RFLPs clustered at each end. We have now undertaken the first global survey of normal variation and disequilibrium across the PAH gene. Four well-mapped single-nucleotide polymorphisms (SNPs) spanning approximately 75 kb, two near each end of the gene, were selected to allow linkage disequilibrium across most of the gene to be examined. These SNPs were studied as PCR-RFLP markers in samples of, on average, 50 individuals for each of 29 populations, including, for the first time, multiple populations from Africa and from the Americas. All four sites are polymorphic in all 29 populations. Although all but 5 of the 16 possible haplotypes reach frequencies >5% somewhere in the world, no haplotype was seen in all populations. Overall linkage disequilibrium is highly significant in all populations, but disequilibrium between the opposite ends is significant only in Native American populations and in one African population. This study demonstrates that the physical extent of linkage disequilibrium can differ substantially among populations from different regions of the world, because of both ancient genetic drift in the ancestor common to a large regional group of modern populations and recent genetic drift affecting individual populations.  相似文献   

9.

Background

Haplotype analysis of closely associated markers has proven to be a powerful tool in kinship analysis, especially when short tandem repeats (STR) fail to resolve uncertainty in relationship analysis. STR located on the X chromosome show stronger linkage disequilibrium compared with autosomal STR. So, it is necessary to estimate the haplotype frequencies directly from population studies as linkage disequilibrium is population-specific.

Methodology and Findings

Twenty-six X-STR loci including six clusters of linked markers DXS6807-DXS8378-DXS9902(Xp22), DXS7132-DXS10079-DXS10074-DXS10075-DXS981 (Xq12), DXS6801-DXS6809-DXS6789-DXS6799(Xq21), DXS7424-DXS101-DXS7133(Xq22), DXS6804-GATA172D05(Xq23), DXS8377-DXS7423 (Xq28) and the loci DXS6800, DXS6803, DXS9898, GATA165B12, DXS6854, HPRTB and GATA31E08 were typed in four nationality (Han, Uigur, Kazakh and Mongol) samples from China (n = 1522, 876 males and 646 females). Allele and haplotype frequency as well as linkage disequilibrium data for kinship calculation were observed. The allele frequency distribution among different populations was compared. A total of 5–20 alleles for each locus were observed and altogether 289 alleles for all the selected loci were found. Allele frequency distribution for most X-STR loci is different in different populations. A total of 876 male samples were investigated by haplotype analysis and for linkage disequilibrium. A total of 89, 703, 335, 147, 39 and 63 haplotypes were observed. Haplotype diversity was 0.9584, 0.9994, 0.9935, 0.9736, 0.9427 and 0.9571 for cluster I, II, III, IV, V and VI, respectively. Eighty-two percent of the haplotype of cluster IIwas found only once. And 94% of the haplotype of cluster III show a frequency of <1%.

Conclusions

These results indicate that allele frequency distribution for most X-STR loci is population-specific and haplotypes of six clusters provide a powerful tool for kinship testing and relationship investigation. So it is necessary to obtain allele frequency and haplotypes data of the linked loci for forensic application.  相似文献   

10.
The major histocompatibility complex (MHC) shows a remarkable conservation of particular HLA antigens and haplotypes in linkage disequilibrium in most human populations, suggesting the existence of a convergent evolution. A recent example of such conservation is the association of particular HLA haplotypes with the HFE mutations. With the objective of exploring the significance of that association, the present paper offers an analysis of the linkage disequilibrium between HLA alleles or haplotypes and the HFE mutations in a Portuguese population. Allele and haplotype associations between HLA and HFE mutations were first reviewed in a population of 43 hemochromatosis families. The results confirmed the linkage disequilibrium of the HLA haplotype HLA-A3-B7 and the HLA-A29 allele, respectively, with the HFE mutations C282Y and H63D. In order to extend the study of the linkage disequilibrium between H63D and the HLA-A29-containing haplotypes in a normal, random population, an additional sample of 398 haplotypes was analyzed. The results reveal significant linkage disequilibrium between the H63D mutation and all HLA-A29-containing haplotypes, favoring the hypothesis of a co-selection of H63D and the HLA-A29 allele itself. An insight into the biological significance of this association is given by the finding of significantly higher CD8(+) T-lymphocyte counts in subjects simultaneously carrying the H63D mutation and the HLA-A29 allele.  相似文献   

11.
12.
In population- and family-based association studies, it is useful to have some knowledge of the patterns of linkage disequilibrium that exist between markers in candidate regions. When such studies are carried out with multiallelic markers, it is often convenient to group the alleles into a biallelic system, for analysis. In this study, we specifically examined the interleukin-1 (IL-1) gene cluster on chromosome 2, a region containing candidates for many inflammatory and autoimmune disorders. Data were collected on eight markers, four of which were multiallelic. Using these data, we investigated the effect of three allele-grouping strategies, including a novel method, on the detection of linkage disequilibrium. The novel approach, termed the "delta method," measures the deviation from the expected haplotype frequencies under linkage equilibrium, for each allelic combination. This information is then used to group the alleles, in an attempt to avoid the grouping together of alleles at one locus that are in opposite disequilibrium with the same allele at the second locus. The estimate haplotype frequencies (EH) program was used to estimate haplotype frequencies and the disequilibrium measure. In our data it was found that the delta method compared well with the other two strategies. Using this method, we found that there was a reasonable correlation between disequilibrium and physical distance in the region (r=-.540, P=.001, one-tailed). We also identified a common, eight-locus haplotype of the IL-1 gene cluster.  相似文献   

13.
Ma L  Xue Y  Liu Y  Wang Z  Cui X  Li P  Fu S 《Hereditas》2005,142(2005):103-111
It has been shown that the variants of alcohol dehydrogenase (ADH) genes exhibit great diversities among various populations and are associated with susceptibility to alcoholism. To investigate the distribution of SNPs at ADH genes in Chinese populations and the genetic relationship of these groups, we collected 467 individuals from 15 groups distributing widely from north to south in China and genotyped 7 SNPs at ADH genes respectively. The statistic analyses of allele frequencies, estimated haplotype frequencies, pairwise linkage disequilibrium, AMOVA (analysis of molecular variance), pairwise Fst', and cluster analysis indicated (1) that six of these seven SNPs showed great variations in the 15 Chinese populations, and three of them (RsaI, SspI, EcoRI), were confirmed to be informative SNPs. However, the causative SNP ADH1B Arg47His confirmed in case-control studies could not act as significant indicator to distinguish bibulous groups from non-bibulous groups in healthy individuals; (2) haplotypes constructed with ADH SNPs could be used as markers to discern different populations in China, and six-allele haplotype "221211" was the most common one defined in present study; (3) on the basis of SNPs analysis of ADH genes, the 15 populations were grouped into northern groups and southern groups. Moreover, the origin relationship among the populations was indicated according to the results of cluster analysis.  相似文献   

14.
Linkage disequilibrium in the North American Holstein population   总被引:2,自引:0,他引:2  
Linkage disequilibrium was estimated using 7119 single nucleotide polymorphism markers across the genome and 200 animals from the North American Holstein cattle population. The analysis of maternally inherited haplotypes revealed strong linkage disequilibrium ( r 2   >   0.8) in genomic regions of ∼50 kb or less. While linkage disequilibrium decays as a function of genomic distance, genomic regions within genes showed greater linkage disequilibrium and greater variation in linkage disequilibrium compared with intergenic regions. Identification of haplotype blocks could characterize the most common haplotypes. Although maximum haplotype block size was over 1 Mb, mean block size was 26–113 kb by various definitions, which was larger than that observed in humans (∼10 kb). Effective population size of the dairy cattle population was estimated from linkage disequilibrium between single nucleotide polymorphism marker pairs in various haplotype ranges. Rapid reduction of effective population size of dairy cattle was inferred from linkage disequilibrium in recent generations. This result implies a loss of genetic diversity because of the high rate of inbreeding and high selection intensity in dairy cattle. The pattern observed in this study indicated linkage disequilibrium in the current dairy cattle population could be exploited to refine mapping resolution. Changes in effective population size during past generations imply a necessity of plans to maintain polymorphism in the Holstein population.  相似文献   

15.
Although many studies have shown that animal-associated bacterial species exhibit linkage disequilibrium at chromosomal loci, recent studies indicate that both animal-associated and soil-borne bacterial species can display a nonclonal genetic structure in which alleles at chromosomal loci are in linkage equilibrium. To examine the situation in soil-borne species further, we compared genetic structure in two soil populations of Rhizobium leguminosarum bv. trifolii and two populations of R. leguminosarum bv. viciae from two sites in Oregon, with genetic structure in R. leguminosarum bv. viciae populations recovered from peas grown at a site in Washington, USA, and at a site in Norfolk, UK. A total of 234 chromosomal types (ET) were identified among 682 strains analysed for allelic variation at 13 enzyme-encoding chromosomal loci by multilocus enzyme electrophoresis (MLEE). Chi-square tests for heterogeneity of allele frequencies showed that the populations were not genetically uniform. A comparison of the genetic diversity within combined and individual populations confirmed that the Washington population was the primary cause of genetic differentiation between the populations. Each individual population exhibited linkage disequilibrium, with the magnitude of the disequilibrium being greatest in the Washington population and least in the UK population of R. leguminosarum bv. viciae. Linkage disequilibrium in the UK population was created between two clusters of 9 and 23 ETs, which, individually, were in linkage equilibrium. Strong linkage disequilibrium between the two major clusters of 8 and 12 ETs in the Washington population was caused by the low genetic diversity of the ETs within each cluster relative to the inter-cluster genetic distance. Because neither the magnitude of genetic diversity nor of linkage disequilibrium increased as hierarchical combinations of the six local populations were analysed, we conclude that the populations have not been isolated from each other for sufficient time, nor have they been exposed to enough selective pressure to develop unique multilocus genetic structure.  相似文献   

16.
Summary We used the following polymorphic markers: APOC2 (BanI, BglI, TaqI), CKMM (NcoI, TaqI), and D19S63 (PstI) to haplotype 33 Spanish myotonic dystrophy (DM) families. We analysed the allele and haplotype frequencies of our sample, and the possible association of alleles or haplotypes with the disease. We found a slight linkage disequilibrium between APOC2 (BanI) and DM, but no disequilibrium when using all other APOC2 and CKMM RFLPs; this agrees with data previously reported. In addition, we found a very strong linkage disequilibrium when using D19S63 (PstI), the + allele being associated with the DM locus. This disequilibrium in the Spanish population indicates that D19S63 is very close to the DM locus.  相似文献   

17.
Positional cloning of disease genes: advantages of genetic isolates.   总被引:10,自引:0,他引:10  
Genetic isolates with a history of a small founder population, long-lasting isolation and population bottlenecks represent exceptional resources in the identification of disease genes. Specific rare, monogenic diseases become enriched, and families with multiple affected individuals occur frequently enough to be used in linkage analyses for locus identification. Further, the vast majority of cases are caused by the same mutation, and disease alleles reveal linkage disequilibrium (LD) with markers over significant genetic intervals; this facilitates disease locus identification by similarity search for a shared genotype or haplotype in small study samples consisting of few affected individuals. LD observed in disease alleles adds power to linkage analyses and helps to define the exact location of disease loci on the genetic map. Typically, based on the linkage disequilibrium and the ancient haplotype, the critical DNA region can be defined from the original 1- to 2-cM resolution obtained in linkage analysis to 50-200 kb, greatly facilitating the targeting of physical cloning and sequencing efforts. These advantages have been well demonstrated in the positional cloning of several rare monogenic diseases enriched in population isolates like the example of Finland used here. How useful genetic isolates will prove to be in the identification of complex disease genes is dependent on the genealogical history of the isolate, including the size of the founding population and the expansion rate during the history of the population.  相似文献   

18.
A four-site haplotype system at the dopamine D2 receptor locus (DRD2) has been studied in a global sample of 28 distinct populations. The haplotype system spans about 25 kb, encompassing the coding region of the gene. The four individual markers include three TaqI restriction site polymorphisms (RSPs) – TaqI “A”, “B”, and “D” sites – and one dinucleotide short tandem repeat polymorphism (STRP). All four of the marker systems are polymorphic in all regions of the world and in most individual populations. The haplotype system shows the highest average heterozygosity in Africa, a slightly lower average heterozygosity in Europe, and the lowest average heterozygosities in East Asia and the Americas. Across all populations, 20 of the 48 possible haplotypes reached a frequency of at least 5% in at least one population sample. However, no single population had more than six haplotypes reaching that frequency. In general, African populations had more haplotypes present in each population and more haplotypes occurring at a frequency of at least 5% in that population. Permutation tests for significance of overall disequilibrium (all sites considered simultaneously) were highly significant (P<0.001) in all 28 populations. Except for three African samples, the pairwise disequilibrium between the outermost RSP markers, TaqI “B” and “A”, was highly significant with D’ values greater than 0.8; in two of those exceptions the RSP marker was not polymorphic. Except for those same two African populations, the 16-repeat allele at the STRP also showed highly significant disequilibrium with the TaqI “B” site in all populations, with D’ values usually greater than 0.7. Only four haplotypes account for more than 70% of all chromosomes in virtually all non-African populations, and two of those haplotypes account for more than 70% of all chromosomes in most East Asian and Amerindian populations. A new measure of the amount of overall disequilibrium shows least disequilibrium in African populations, somewhat more in European populations, and the greatest amount in East Asian and Amerindian populations. This pattern seems best explained by random genetic drift with low levels of recombination, a low mutation rate at the STRP, and essentially no recurrent mutation at the RSP sites, all in conjunction with an “Out of Africa” model for recent human evolution. Received: 14 January 1998 / Accepted 19 March 1998  相似文献   

19.
A genomewide screen for asthma- and atopy-susceptibility loci was conducted, using 563 markers, in 693 Hutterites who are members of a single 15-generation pedigree, nearly doubling the sample size from the authors' earlier studies. The resulting increase in power led to the identification of 23 loci in 18 chromosomal regions showing evidence for linkage that is, in general, 10-fold more significant (P<.001 vs. P<.01) than the linkages reported previously in this population. Moreover, linkages to loci in 11 chromosomal regions were identified for the first time in the Hutterites in this report, including five regions (5p, 5q, 8p, 14q, and 16q) showing evidence both of linkage, by the likelihood ratio (LR) chi(2), and of disequilibrium, by the transmission/disequilibrium test. A region on chromosome 19 continues to show evidence for linkage, by both tests, in this study. Studies of 17 candidate genes provide evidence for association with variation in the IL4RA gene (16p12), the HLA class II genes (6p21), and the interferon-alpha gene cluster (9p22), but the lack of evidence for linkage in these regions by the LR chi(2) test suggests that these are minor susceptibility loci. A polymorphism in the CD14 gene is in linkage disequilibrium with an as yet unidentified susceptibility allele in the 5q cytokine cluster, a region showing evidence for linkage among the Hutterites. Finally, 10 of the regions showing evidence for linkage in the Hutterites have shown evidence of linkage to related phenotypes in other genome screens, suggesting that these regions may contain common alleles that have relatively large effects on asthma and atopy phenotypes in diverse populations.  相似文献   

20.
While studies have implicated alleles at the CAG and GGC trinucleotide repeats of the androgen receptor gene with high-grade, aggressive prostate cancer disease, little is known about the normal range of variation for these two loci, which are separated by about 1.1 kb. More importantly, few data exist on the extent of linkage disequilibrium (LD) between the two loci in different human populations. Here we present data on CAG and GGC allelic variation and LD in six diverse populations. Alleles at the CAG and GGC repeat loci of the androgen receptor were typed in over 1000 chromosomes from Africa, Asia, and North America. Levels of linkage disequilibrium between the two loci were compared between populations. Haplotype variation and diversity were estimated for each population. Our results reveal that populations of African descent possess significantly shorter alleles for the two loci than non-African populations (P<0.0001). Allelic diversity for both markers was higher among African Americans than any other population, including indigenous Africans from Sierra Leone and Nigeria. Analysis of molecular variance revealed that approx. 20% of CAG and GGC repeat variance could be attributed to differences between the populations. All non-African populations possessed the same common haplotype while the three populations of African descent possessed three divergent common haplotypes. Significant LD was observed in our sample of healthy African Americans. The LD observed in the African American population may be due to several reasons; recent migration of African Americans from diverse rural communities following urbanization, recurrent gene flow from diverse West African populations, and admixture with European Americans. This study represents the largest genotyping effort to be performed on the two androgen receptor trinucleotide repeat loci in diverse human populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号