共查询到20条相似文献,搜索用时 0 毫秒
1.
Ding Min Lia Jingxia Leonard Stephen S. Shi Xianglin Costa Max Castranova Vincent Vallyathan Val Huang Chuanshu 《Molecular and cellular biochemistry》2002,(1):81-90
The present study investigated the differential requirement of ROS in UV-induced activation of these pathways. Exposure of the mouse epidermal Cl41 cells to UV radiation led to generation of ROS as measured by electron spin resonance (ESR) and by H2O2 and O2
–; fluorescence staining assay. Treatment of cells with UV radiation or H2O2 also markedly activated Erks, JNKs, p38 kinase and led to increases in phosphorylation of Akt and p70S6k in mouse epidermal JB6 cells. The scavenging of UV-generated H2O2 by N-acety-L-cyteine (NAC, a general antioxidant) or catalase (a specific H2O2 inhibitor) inhibited UV-induced activation of JNKs, p38 kinase, Akt and p70S6k, while it did not show any inhibitory effects on Erks activation. Further, pretreatment of cells with sodium formate (an OH radical scavenger) or superoxide dismutase (O2
– radical scavenger) did not inhibit any of these pathways. These results demonstrate that H2O2 generation is required for UV-induced phosphorylation of Akt and p70S6k, and involved in activation of JNKs and p38 kinase, but not Erks. 相似文献
2.
Background
Oxidative stress induced by the accumulation of reactive oxygen species (ROS) has a causal role in the development of insulin resistance, whereas ROS themselves function as intracellular second messengers that promote insulin signal transduction. ROS can act both positively and negatively on insulin signaling, but the molecular mechanisms controlling these dual actions of ROS are not fully understood.Methodology/Principal Findings
Here, we directly treated H4IIEC hepatocytes with hydrogen peroxide (H2O2), a representative membrane-permeable oxidant and the most abundant ROS in cells, to identify the key factors determining whether ROS impair or enhance intracellular insulin signaling. Treatment with high concentrations of H2O2 (25–50 µM) for 3 h reduced insulin-stimulated Akt phosphorylation, and increased the phosphorylation of both JNK and its substrate c-Jun. In contrast, lower concentrations of H2O2 (5–10 µM) enhanced insulin-stimulated phosphorylation of Akt. Moreover, lower concentrations suppressed PTP1B activity, suggesting that JNK and phosphatases such as PTP1B may play roles in determining the thresholds for the diametrical effects of H2O2 on cellular insulin signaling. Pretreatment with antioxidant N-acetyl-L-cysteine (10 mM) canceled the signal-promoting action of low H2O2 (5 µM), and it canceled out further impairment of insulin of insulin signaling induced by high H2O2 (25 µM).Conclusions/Significance
Our results demonstrate that depending on its concentration, H2O2 can have the positive or negative effect on insulin signal transduction in H4IIEC hepatocytes, suggesting that the concentration of intracellular ROS may be a major factor in determining whether ROS impair or enhance insulin signaling. 相似文献3.
The role of phosphatases in signal transduction 总被引:10,自引:0,他引:10
D R Alexander 《The New biologist》1990,2(12):1049-1062
The importance of phosphatases in regulating the phosphorylation of proteins involved in cell signaling has been demonstrated by four recent discoveries. First, a new family of receptor-like transmembrane phosphotyrosine phosphatases, highly conserved throughout evolution, was shown to be distributed in a wide variety of tissues. Extensive heterogeneity in the extracellular regions of these molecules points to the existence of a wide diversity of ligands. These ligands are thought to mediate transduction of signals to the cell interior by means of the phosphatase activity occurring within the cytoplasmic domains of the receptor-like transmembrane phosphotyrosine phosphatases. Second, cell-permeable tumor promoters, such as okadaic acid, were shown to be potent phosphatase inhibitors that have multiple effects on signaling pathways. Third, the subunits of the type 2A phosphatase were found to associate with transforming antigens encoded by DNA tumor viruses, indicating a role for phosphatases in mediating abnormal proliferative events. Fourth, several cell-cycle mutants were found to encode phosphatases. This review focuses on the significance of the transmembrane phosphotyrosine phosphatases and on the possible ways in which intracellular phosphatases function in signaling pathways. 相似文献
4.
5.
We previously reported that endothelin-1 or platelet-derived growth factor promoted in aortic smooth muscle cells a rapid hydrolysis of 1-O-alkyl-2-acyl-sn-glycero-3-phosphoethanolamine (alkyl-PE) which was immediately converted into 1-O-alkyl-2,3-diacyl-sn-glycerol (alkyl-TG) within 5 s or 60 s respectively [C. Comminges et al. (1996) Biochem. Biophys. Res. Commun. 220, 1008-1013 and C. Comminges et al. (1997) Biochim. Biophys. Acta 1355, 69-80]. In this study, we show that this alkyl-PE hydrolysis is triggered by a transient activation of a specific phospholipase C (PLC) regulated by pertussis toxin-sensitive heterotrimeric G-proteins. Moreover, this PLC can be triggered through a Ca2+ influx depending on L-type Ca2+ channel activation, as suggested by the use of a specific 'activator' S(-)-BayK 8644 and of selective inhibitors such as nimodipine. Interestingly, low concentrations (10(-8)-10(-7)M) of alkyl-TG block the opening of L-type Ca2+ channels, whereas identical concentrations of DG do not alter L-type Ca2+ channels. This study thus unravels a hitherto unrecognized signaling pathway generating alkyl-TG as a novel lipid second messenger, potentially acting as a negative feedback regulator of L-type Ca2+ channels. 相似文献
6.
7.
8.
9.
Junn E Lee KN Ju HR Han SH Im JY Kang HS Lee TH Bae YS Ha KS Lee ZW Rhee SG Choi I 《Journal of immunology (Baltimore, Md. : 1950)》2000,165(4):2190-2197
Stimulation of human lung fibroblast cells with TGF-beta1 resulted in a transient burst of reactive oxygen species with maximal increase at 5 min after treatment. This reactive oxygen species increase was inhibited by the antioxidant, N-acetyl-l -cysteine (NAC). TGF-beta1 treatment stimulated IL-6 gene expression and protein synthesis in human lung fibroblast cells. Antioxidants including NAC, glutathione, and catalase reduced TGF-beta1-induced IL-6 gene expression, and direct H2O2 treatment induced IL-6 expression in a dose-dependent manner. NAC also reduced TGF-beta1-induced AP-1 binding activity, which is involved in IL-6 gene expression. It has been reported that Ca2+ influx is stimulated by TGF-beta1 treatment. EGTA suppressed TGF-beta1- or H2O2-induced IL-6 expression, and ionomycin increased IL-6 expression, with simultaneously modulating AP-1 activity in the same pattern. PD98059, an inhibitor of mitogen-activated protein kinase (MAPK) kinase/extracellular signal-related kinase kinase 1, suppressed TGF-beta1- or H2O2-induced IL-6 and AP-1 activation. In addition, TGF-beta1 or H2O2 increased MAPK activity which was reduced by EGTA and NAC, suggesting that MAPK is involved in TGF-beta1-induced IL-6 expression. Taken together, these results indicate that TGF-beta1 induces a transient increase of intracellular H2O2 production, which regulates downstream events such as Ca2+ influx, MAPK, and AP-1 activation and IL-6 gene expression. 相似文献
10.
Alessandro Didonna 《Cellular & molecular biology letters》2013,18(2):209-230
Prion diseases are a class of fatal neurodegenerative disorders that can be sporadic, genetic or iatrogenic. They are characterized by the unique nature of their etiologic agent: prions (PrPSc). A prion is an infectious protein with the ability to convert the host-encoded cellular prion protein (PrPC) into new prion molecules by acting as a template. Since Stanley B. Prusiner proposed the “protein-only” hypothesis for the first time, considerable effort has been put into defining the role played by PrPC in neurons. However, its physiological function remains unclear. This review summarizes the major findings that support the involvement of PrPC in signal transduction. 相似文献
11.
Jans J Garinis GA Schul W van Oudenaren A Moorhouse M Smid M Sert YG van der Velde A Rijksen Y de Gruijl FR van der Spek PJ Yasui A Hoeijmakers JH Leenen PJ van der Horst GT 《Molecular and cellular biology》2006,26(22):8515-8526
Cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) comprise major UV-induced photolesions. If left unrepaired, these lesions can induce mutations and skin cancer, which is facilitated by UV-induced immunosuppression. Yet the contribution of lesion and cell type specificity to the harmful biological effects of UV exposure remains currently unclear. Using a series of photolyase-transgenic mice to ubiquitously remove either CPDs or 6-4PPs from all cells in the mouse skin or selectively from basal keratinocytes, we show that the majority of UV-induced acute effects to require the presence of CPDs in basal keratinocytes in the mouse skin. At the fundamental level of gene expression, CPDs induce the expression of genes associated with repair and recombinational processing of DNA damage, as well as apoptosis and a response to stress. At the organismal level, photolyase-mediated removal of CPDs, but not 6-4PPs, from the genome of only basal keratinocytes substantially diminishes the incidence of skin tumors; however, it does not affect the UVB-mediated immunosuppression. Taken together, these findings reveal a differential role of basal keratinocytes in these processes, providing novel insights into the skin's acute and chronic responses to UV in a lesion- and cell-type-specific manner. 相似文献
12.
Mitochondria are intracellular organelles thought to have evolved from an alphaproteobacterium engulfed by the ancestor of the eukaryotic cell, an archeon, two billion years ago. Although mitochondria are frequently recognised as the “power plant” of the cell, the function of these organelles go beyond the simple generation of ATP. In fact, mounting evidence suggests that mitochondria are involved in several cellular processes, from regulation of cell death to signal transduction. Given this important role in cell physiology, mitochondrial dysfunction has been frequently associated with human diseases including cancer. Importantly, recent evidence suggests that mitochondrial function is directly regulated by oncogenes and tumour suppressors. However, the consequences of deregulation of mitochondrial function in tumour formation are still unclear. In this review, I propose that mitochondria play a pivotal role in shaping the oncogenic signalling cascade and that mitochondrial dysfunction, in some circumstances, is a required step for cancer transformation. 相似文献
13.
Kanesaki Y Yamamoto H Paithoonrangsarid K Shoumskaya M Suzuki I Hayashi H Murata N 《The Plant journal : for cell and molecular biology》2007,49(2):313-324
Oxidative stress caused by reactive oxygen species and, in particular, to hydrogen peroxide (H(2)O(2)) has a major impact on all biological systems, including plants and microorganisms. We investigated the H(2)O(2)-inducible expression of genes in the cyanobacterium Synechocystis sp. PCC 6803 using genome-wide DNA microarrays. Our systematic screening of a library of mutant lines with defects in histidine kinases (Hiks) by RNA slot-blot hybridization and DNA-microarray analysis suggested that four Hiks, namely, Hik33, Hik34, Hik16 and Hik41, are involved in the perception and transduction of H(2)O(2) signals that regulate the gene expression of 26 of the 77 H(2)O(2)-inducible genes with induction factors higher than 4.0. Among the four Hiks, Hik33 was the main contributor and was responsible for 22 of the 26 H(2)O(2)-inducible genes under the control of the Hiks. By contrast to Hik33, PerR encoding putative peroxide-sensing protein is involved in the regulation of only nine H(2)O(2)-inducible genes. 相似文献
14.
We have examined the role of autophosphorylation in insulin signal transmission by oligonucleotide directed mutagenesis of seven potential tyrosine autophosphorylation sites in the human insulin receptor. Chinese hamster ovary cells transfected with these receptors were analyzed for insulin stimulated 2-deoxyglucose uptake, thymidine incorporation, endogenous substrate phosphorylation, and in vitro kinase activity. We found that phosphorylation on tyrosine residues 953, 1316, and 1322 were not necessary for receptor-mediated signal transduction. Mutation of tyrosine 960 reduced but did not abolish the signaling capabilities of the receptor. Finally, the simultaneous mutation of tyrosine residues 1146, 1150, and 1151 (the numbering system is that of Ullrich et al. (Ullrich, A., Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y. C., Tsubokawa, M., Mason, A., Seeburg, P.H., Grunfeld, C., Rosen, O. M., and Ramachandran, J. (1985) Nature 313, 756-761) resulted in a biologically inactive receptor, suggesting that the insulin receptor can be inactivated by removal of key autophosphorylation sites. 相似文献
15.
The phytohormone ethylene is perceived in Arabidopsis by a five-member receptor family. Earlier work has demonstrated that the basic functional unit for an ethylene receptor is a disulfide-linked homodimer. We recently reported in The Journal of Biological Chemistry that the ethylene-receptor ETR1 physically associates with other ethylene receptors through higher order interactions, suggesting the existence of receptor clusters. Here we consider the implications of such clusters upon the mechanism of ethylene signal transduction. In particular, we consider how such clustering provides a cooperative mechanism, akin to what has been found for the prokaryotic chemoreceptors, by which plant sensitivity to ethylene may be increased. In addition, we consider how the dominant ethylene insensitivity conferred by some receptor mutations, such as etr1-1, may also be propagated by interactions among members of the ethylene receptor family.Key words: ethylene, receptor, ETR1, cooperativity, ArabidopsisThe plant hormone ethylene regulates growth and development, and is perceived by a five-member family of receptors (ETR1, ERS1, ETR2, ERS2 and EIN4) in Arabidopsis.1 Genetic analysis indicates that ethylene receptors are functionally redundant and negatively regulate ethylene responses through interactions with the Raf-like kinase CTR1.2–5 The functional unit of an ethylene receptor in a disulfide-linked homodimer, with each homodimer capable of binding one ethylene molecule.6,7 However, several observations suggest that propagation of the ethylene signal through the receptors is likely to involve more than just ethylene-induced changes within individual receptor homodimers. First, Arabidopsis is amazingly sensitive to ethylene and can respond to ethylene concentrations as low as 0.2 nl/L,8 300-fold lower than the Kd of the receptors for ethylene, which suggests that some mechanism exists for amplifying the input signal.7,9 Second, ethylene-insensitive mutations in the binding sites of the receptors exhibit greater dominance than would be predicted solely from a lesion within one member of the receptor family.10In our paper published in The Journal of Biological Chemistry,11 we demonstrate that the Arabidopsis ethylene receptor ETR1 physically associates with other ethylene receptors through higher order interactions. Such physical interactions suggest that the receptors exist in plants as clusters, and that models for cooperative signaling previously applied to the histidine-kinaselinked chemoreceptors of bacteria may also be applicable to the evolutionarily related ethylene receptors of plants. In bacteria, the highly packed chemoreceptors are found in clusters at one or both poles of the cell.12,13 Structural studies indicate that chemoreceptors can associate to form a ‘trimer of dimers’14,15 and also support the possibility that domain swapping may occur to produce a large interconnected array of receptors. 16 Our studies indicate that ethylene receptors can interact through their cytosolic GAF domains, identifying one possible interface through which conformational changes could be propagated in an ethylene receptor cluster.A higher-order cooperative mechanism among the ethylene receptors may explain the high sensitivity of plants to ethylene. In this model, the ethylene receptors amplify ethylene signaling by lateral signal output. Binding of ethylene to one receptor induces the conformation change of the receptor from a tense state (T) to a relaxed state (R). This conformational change is then propagated to other empty receptors in the cluster due to their physical associations with the receptor in the R state. As a result empty receptors also adopt the relaxed state (R′), resulting in amplification of the initial signal. It should be noted here that mutational evidence supports the unbound state of the receptors (T state) as being the lower energy conformation of the receptors.17 Thus, according to this model, part of the energy from ligand binding would be used to transmit conformational changes to the neighboring receptors.An alternative model that may also explain the high sensitivity of ethylene responsiveness in plants, and one that is not necessarily incompatible with the previous model, is a conjugation model.18 Here it is hypothesized that, due to the physical proximity of the ethylene receptors, that ethylene released from one receptor then binds to another receptor rather than diffusing away. Through this conjugation mechanism, one ethylene molecule could amplify its signal by converting the conformations of multiple ethylene receptors from the ethylene-unbound state (T) to the ethylene-bound state (R). This model is based on several assumptions. One assumption is that a single ethylene molecule can bind ethylene receptors in the same cluster multiple times due to the dynamic binding of ethylene and ethylene receptor. A second assumption is that, after ethylene is released from one ethylene receptor, the recovery time for that receptor to resume the T state is longer than the time required for the released ethylene to bind to and convert another receptor from the T to the R state.Models for cooperativity need to also explain the dominant ethylene insensitivity of various mutant receptors such as etr1-1, in which a missense mutation results in a receptor incapable of binding ethylene. Several studies indicate that the etr1-1 mutant receptor acts cooperatively to affect the signal output from other wild-type receptors (i.e., the presence of the etr1-1 receptor in its T state increases the likelihood of other receptors adopting the T state).10,11 This observation can be most readily explained if the dominant ethylene-insensitive mutations result in a receptor that requires more energy to undergo the T to R transition than do the wild-type receptors. For example, the etr1-1 mutation may increase the stability of the T form (a T′ state). There is evidence to support this possibility. The etr1-1 missense mutation results in a receptor unable to chelate a copper cofactor necessary for ethylene binding,19 but the effects of this mutation on signaling are different from wild-type receptors that lack their copper cofactor. The etr1-1 mutant receptor appears locked in its T state, whereas wild-type receptors lacking the copper cofactor appear to be in the R state.20 Thus etr1-1 is truly a gain-of-function mutation that alters the conformation of the receptor in ways not necessarily predicted from just the loss of the copper cofactor.In conclusion, we have attempted here to provide models that can resolve an apparent contradiction in the cooperative signaling behavior exhibited by ethylene receptors. The high sensitivity of plants to ethylene suggest cooperative changes in which an R state can be propagated within a receptor cluster, but the dominance of the ethylene ethylene-insensitive mutant etr1-1 suggests that the T state can also be propagated within a receptor cluster. It should be born in mind, however, that ethylene signaling is mediated by multiple signaling components. The ethylene receptors regulate ethylene responses through interaction with and modulation of CTR1 kinase activity. Thus, the total kinase activity of CTR1 represents the signal output from the receptors. This situation is very similar to that of the bacterial chemoreceptors, which regulate the activity of an associated histidine kinase, and, as with the chemoreceptors, the stoichiometry of CTR1 interactions with the ethylene receptors and the means by which its kinase activity is regulated are important for the elucidation of the mechanism of ethylene signal transduction. 相似文献
16.
J A Maassen B M Burgering R H Medema A P Osterop G C van der Zon W M?ller J L Bos 《Hormones et métabolisme》1992,24(5):214-218
Ras-proteins are guanine nucleotide binding proteins, which, in the GTP bound state emit a strong mitogenic signal. In the GDP bound state, the protein appears inactive. We have found that stimulation by insulin of cells expressing elevated levels of insulin receptors results in a rapid conversion of Ras-GDP into Ras-GTP. This process is part of the signalling pathway leading to immediate-early gene expression and a mitogenic response. There seems to be no involvement of Ras-GTP formation in the process of insulin stimulated glucose transport. Though the precise mechanism by which Ras is converted to the GTP bound state remains to be established, a tight correlation exists between receptor autophosphorylation and Ras-GTP formation. 相似文献
17.
Julie A. Frearson Denis R. Alexander 《BioEssays : news and reviews in molecular, cellular and developmental biology》1997,19(5):417-427
Phosphotyrosine phosphatases (PTPases) are the enzymes which remove phosphate groups from protein tyrosine residues. An enormous number of phosphatases have been cloned and sequenced during the past decade, many of which are expressed in haematopoietic cells. This review focuses on the biochemistry and cell biology of three phosphatases, the transmembrane CD45 and the cytosolic SH2-domain-containing PTPases SHP-1 and SHP-2, to illustrate the diverse ways in which PTPases regulate receptor signal transduction. The involvement of these and other PTPases has been demonstrated in haematopoietic cell development, apoptosis, activation and non-responsiveness. A common theme in the actions of many haematopoietic cell PTPases is the way in which they modulate the thresholds for receptor signalling, thereby regulating critical events in the positive and negative selection of lymphocytes. There is growing interest in haematopoietic PTPases and their associated regulatory proteins as targets for pharmaceutical intervention and in the involvement of these enzymes in human disease. 相似文献
18.
19.
TGF-beta1 induces cell cycle activation in mouse embryonic fibroblasts by down regulation of p27(Kip1) but it can also induce delay of EGF-induced cell cycle activation in these cells under similar conditions. In an attempt to determine the basis for these responses, the study of early TGF-beta1-induced signal transduction pathways in the presence and absence of EGF was undertaken. It is proposed that a likely target for the inhibition by TGF-beta1 of the early EGF-induced p42/p44 MAPK is at the c-Raf locus. The finding that the catalytic subunits of PKA are associated with Raf-1 within minutes following application of TGF-beta1 but not EGF in fibroblasts arrested in early G1 is suggestive of a role of PKA-Raf-1 interaction in TGF-beta1 induced delay of EGF-induced cell cycle kinetics. A model for TGF-beta1 induced translocation to the plasma membrane-associated Raf-1 is proposed. Reports that Rho-like GTPase activity is critical for the activation of TGF-beta1 downstream pathways raises the question as to whether Rho proteins are involved in these observed TGF-beta1-induced responses. Post-receptor signaling mechanisms for TGF-beta1 and cross-talk with PKA-mediated pathways are examined in an effort to explain the modulation by TGF-beta1 of mitogen-induced cell proliferation in mesenchymal cells. 相似文献
20.
Differential role of hydrogen peroxide and staurosporine in induction of cell death in glioblastoma cells lacking DNA-dependent protein kinase 总被引:1,自引:0,他引:1
Chen GG Sin FL Leung BC Ng HK Poon WS 《Apoptosis : an international journal on programmed cell death》2005,10(1):185-192
Various DNA double-strand break repair mechanisms, in which DNA-dependent protein kinase (DNA-PK) has a major role, are involved both in the development and treatment of glioblastoma. The aim of the present study was to investigate how glioblastoma cells responded to hydrogen peroxide and staurosporine (STS) and how such a response is related to DNA-PK. Two human glioblastoma cell lines, M059J cells that lack DNA-PK activity, and M059K cells that express a normal level of DNA-PK, were exposed to hydrogen peroxide or STS. The response of the cells to hydrogen peroxide or STS was recorded by measuring cell death, which was detected by three different methods—MTT, annexin-V and propidium iodide staining, and JC-1 mitochondrial probe. The result showed that both hydrogen peroxide and STS were able to induce cell death of the glioblastoma cells and that the former was mainly associated with necrosis and the latter with apoptosis. Glioblastoma cells lacking DNA-PK were less sensitive to STS treatment than those containing DNA-PK. However, DNA-PK had no significant influence on hydrogen peroxide treatment. We further found that catalase, an antioxidant enzyme, could prevent cell death induced by hydrogen peroxide but not by STS, suggesting that the pathways leading to cell death by hydrogen peroxide and STS are different. We conclude that hydrogen peroxide and STS have differential effects on cell death of glioblastoma cells lacking DNA-dependent protein kinase. Such differential roles in the induction of glioblastoma cell death can be of significant value in selecting and/or optimizing the treatment for this malignant brain tumor. 相似文献