首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《MABS-AUSTIN》2013,5(3):679-688
While many antibody therapeutics are formulated at low concentration (~10–20 mg/mL) for intravenous administration, high concentration (> 100 mg/mL) formulations may be required for subcutaneous delivery in certain clinical indications. For such high concentration formulations, product color is more apparent due to the higher molecular density across a given path-length. Color is therefore a product quality attribute that must be well-understood and controlled, to demonstrate process consistency and enable clinical trial blinding. Upon concentration of an IgG4 product at the 2000 L manufacturing scale, variability in product color, ranging from yellow to red, was observed. A small-scale experimental model was developed to assess the effect of processing conditions (medium composition and harvest conditions) on final bulk drug substance (BDS) color. The model was used to demonstrate that, for two distinct IgG4 products, red coloration occurred only in the presence of disulfide reduction-mediated antibody dissociation. The red color-causing component was identified as vitamin B12, in the hydroxocobalamin form, and the extent of red color was correlated with the cobalt (vitamin B12) concentration in the final pools. The intensity of redness in the final BDS was modulated by changing the concentration of vitamin B12 in the cell culture media.  相似文献   

2.
While many antibody therapeutics are formulated at low concentration (~10–20 mg/mL) for intravenous administration, high concentration (> 100 mg/mL) formulations may be required for subcutaneous delivery in certain clinical indications. For such high concentration formulations, product color is more apparent due to the higher molecular density across a given path-length. Color is therefore a product quality attribute that must be well-understood and controlled, to demonstrate process consistency and enable clinical trial blinding. Upon concentration of an IgG4 product at the 2000 L manufacturing scale, variability in product color, ranging from yellow to red, was observed. A small-scale experimental model was developed to assess the effect of processing conditions (medium composition and harvest conditions) on final bulk drug substance (BDS) color. The model was used to demonstrate that, for two distinct IgG4 products, red coloration occurred only in the presence of disulfide reduction-mediated antibody dissociation. The red color-causing component was identified as vitamin B12, in the hydroxocobalamin form, and the extent of red color was correlated with the cobalt (vitamin B12) concentration in the final pools. The intensity of redness in the final BDS was modulated by changing the concentration of vitamin B12 in the cell culture media.  相似文献   

3.
Process control of protein therapeutic manufacturing is central to ensuring the product is both safe and efficacious for patients. In this work, we investigate the cause of pink color variability in development lots of monoclonal antibody (mAb) and Fc-fusion proteins. Results show pink-colored product generated during manufacturing is due to association of hydroxocobalamin (OH-Cbl), a form of vitamin B12. OH-Cbl is not part of the product manufacturing process; however we found cyanocobalamin (CN-Cbl) in cell culture media converts to OH-Cbl in the presence of light. OH-Cbl can be released from mAb and Fc-fusion proteins by conversion with potassium cyanide to CN-Cbl, which does not bind. By exploiting the differential binding of CN-Cbl and OH-Cbl, we developed a rapid and specific assay to accurately measure B12 levels in purified protein. Analysis of multiple products and lots using this technique gives insight into color variability during manufacturing.  相似文献   

4.
Different doses of vitamin B12 (0.25, 0.5, 1, 2 and 4 μg/g, injected intraperitoneally for three consecutive days) altered the activities of mitochondrial-α-glycerophosphate dehydrogenase (α-GPD) and NADP-dependent cytosolic malic enzyme (ME) in the brain of singi fish. The α-GPD activity increased at doses of 0.5, 1, 2 and 4 μg/g vitamin B12. A dose of 0.5 μg/g vitamin B12 induced less activity than higher doses. ME activity increased with 1, 2 and 4 μg/g of vitamin B12/g. The mitochondrial and cytosolic protein content remained unchanged after vitamin B12 administration. Cycloheximide treatment inhibited the vitamin B12-induced increase in α-GPD and ME activity. Thus, vitamin B12 is involved in the induction of some enzymes in fish brain.  相似文献   

5.
In this work a new spectrofluorimetric method for the determination of vitamin B1, based on the catalytic activity of horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H2O2), has been developed. Non‐fluorescent vitamin B1 was easily converted through catalytic oxidation in alkaline medium into a fluorescent compound, even without exposure to light. The linear range for vitamin B1 observed was 0.026–16.83 µg/mL (RSD = 1.75%). The correlation coefficient for the calibration curve and limit of detection were found to be 0.9964 and 0.015 µg/mL, respectively. The developed method is practical, simple, sensitive and relatively free from interference by coexisting substances and has been successfully applied for the determination of vitamin B1 in pharmaceutical preparations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
In ornamental carps from the collection of the Experimental Station, All-Russia Research Institute of Fresh-Water Fisheries, fish with a dirty dark tint of body color among orange and white fish were found. This coloration was shown to be due to the presence of black pigment cells in the lower skin layer. In the outer skin layers these cells were almost entirely absent. This color type was found to be determined by the presence of at least one of alleles B"1or B"2of digenic system B 1, B 2, which is responsible for the development of melanophores in fish skin. Each of the genes of this digenic system is represented by three alleles with the following order of dominance: B> B" > b.  相似文献   

7.
Vitamin analysis was carried out on five microalgae used in aquaculture:Tetraselmis suecica, Isochrysis galbana, Pavlova lutheri, Skeletonema costatum andChaetoceros calcitrans and one macroalga,Sargassum muticum, which is invasive on the Atlantic shores of France. Both liposoluble (provitamin A, E, K) and hydrosoluble (B1, B2, B6, B12, C, PP) vitamins were quantified. For most of them, greater amounts were obtained in the algal products than in the usual sources. On a dry weight basis,Tetraselmis suecica contained 4280 μg g?1 provitamin A and 6323 μg g?1 vitamin E,Pavlova lutheri 1162 μg g?1 vitamin B12 and 837 μg g?1 vitamin C,Isochrysis galbana 2690 μg g?1 vitamin PP and 183 μg g?1 vitamin B6, andSkeletonema costatum 710 μg g?1 vitamin B1.  相似文献   

8.
This paper reports the role of amino acids, betaine and choline on vitamin B12 biosynthesis in Propionibacterium shermanii 566, P. shermanii and Propionibacterium arl AKU 1251. l-Glutamic acid supplemented at the 0.05% (w/v) level in whey permeate stimulated vitamin B12 production in the three organisms, whereas the influence of other amino acids differed in the three strains. A uniform increase in product formation in Propionibacterium cultures with increasing doses of betaine and choline was recorded, but with variable relative effectiveness. However, no significant difference at the 0.50 and 0.75% (w/v) levels of these two compounds was observed. The addition of betaine at 0.5% (w/v) concentration was considered optimal for maximum fermentation efficiency in the cultures. An increase of 2.8–25.7% and 5.1–40.8% in vitamin B12 yield as compared to the control was observed by supplementing whey permeate medium with l-glutamic acid and betaine, respectively, at their optimum values in the organisms studied.  相似文献   

9.
The content, composition and variation of vitamin compounds in goat milk have been little studied. An experimental design was based on 28 commercial farms, selected considering the main feeding system (based on main forage and especially pasture access), goat breed (Alpine vs Saanen) and reproductive management (seasonal reproduction), in the main French goat milk production area. Each farm received two visits (spring and autumn) that included a survey on milk production conditions and bulk milk sampling. Milk vitamins (A, E, B2, B6, B9, B12) and carotenoid concentrations plus colour indices were evaluated. A stepwise approach determined the variables of milk production conditions that significantly altered milk indicators. The main forage in the diet was the major factor altering goat milk vitamin and carotenoid concentrations and colour indices. Bulk milk from goats eating fresh grass as forage was richer in α-tocopherol (+64%), pyridoxal (+35%) and total vitamin B6 (+31%), and b* index (characterising milk yellowness in the CIELAB colour space) was also higher (+12%) than in milk from goats eating conserved forages. In milk from goats eating fresh grass, concentrations of pyridoxamine, lutein and total carotenoids were higher than in milk of goats fed corn silage (+24, +118 and +101%, respectively), and retinol and α-tocopherol concentrations were higher than in milk of goats fed partially dehydrated grass (+45 and +55%). Vitamin B2 concentration was higher in milk of goats eating fresh grass than in milk of goats fed hay or corn silage as forage (+10%). However, bulk milk when goats had access to fresh grass was significantly poorer in vitamin B12 than when fed corn silage (?46%) and in γ-tocopherol (?31%) than when fed conserved forage. Alpine goats produced milk with higher vitamin B2 and folate concentrations than Saanen goats (+18 and +14%, respectively). Additionally, the milk colour index that discriminates milks based on their yellow pigment contents was 7% higher in milk from Alpine than Saanen herds, but milk from Saanen goats was richer in lutein (+46%). Goat milks were richer in vitamins B2 and B12 and folates, but poorer in vitamin B6 in autumn than in spring (+12, +133, +15 and ?13%, respectively). This work highlights that goat milk vitamin and carotenoid concentrations and colour indices vary mainly according to the main forage of the diet and secondly according to the breed and season.  相似文献   

10.
The purpose of the present study was to examine the nutritional status of vitamin B1, B2, and B6 in respect to dietary intake of these vitamins and activity coefficients of the erythrocyte enzymes transketolase, glutathione reductase, and aspartic aminotransferase in young men and women with different physical activity levels. The participants of this study were 20 women and 20 men with high physical activity (groups HAW and HAM, respectively), and 20 women and 20 men with low physical activity (groups LAW and LAM, respectively). The intake of vitamins B1, B2, B6, proteins, and calorie content of the diet was based on the average of the 4-day dietary recalls. To assess nutritional status of vitamin B1, B2, and B6, the activity coefficients (α) of erythrocyte transketolase (ETK), erythrocyte glutathione reductase (EGR), and erythrocyte aspartic aminotransferase (EAST) were estimated in blood hemolysates. The intake of the studied vitamins in the diet was statistically significantly lower in the female groups compared with the respective male groups. Deficiency of vitamin B6 in the diet was present more often in women than in men (in terms of the recommended dietary allowances [RDA]). Values of the activity coefficient αETK indicated that none of the groups in this study suffered the risk of vitamin B1 deficiency. The value of the activity coefficient αEGR indicated that the groups of women and men with low physical activity were more prone to vitamin B2 deficiency compared with the high physical activity groups. The risk of vitamin B6 deficiency (αEAST) in both male groups was higher than in both female groups. The obtained results do not allow for unequivocal determination of the impact of sex and the level of physical activity on intake and nutritional status of vitamin B1, B2, and B6. Independently of sex and the level of physical activity, the women and men consumed insufficient quantities of vitamins B1 and B6, although this was not always related to increased values of corresponding activity coefficients.  相似文献   

11.
Printing is regarded as a revolutionary and feasible technique to guide the fabrication of versatile functional systems with designed architectures. 2D MXenes are nowadays attractive in printed energy storage devices. However, owing to the van der Waals interaction between the MXene layers, the restacking issues within the printed electrodes can significantly impede the ion/electrolyte transport and hence handicap the electrochemical performances. Herein, a melamine formaldehyde templating method is demonstrated to develop crumpled nitrogen‐doped MXene (MXene‐N) nanosheets. The nitrogen doping boosts the electrochemical performances of MXene via enhanced conductivity and redox activity. Accordingly, two types of MXene‐N inks are prepared throughout the optimization of the ink viscosity to fit the 2D screen printing and 3D extrusion printing, respectively. As a result, the screen printed MXene‐N microsupercapacitor delivers an areal capacitance of 70.1 mF cm?2 and outstanding mechanical robustness. Furthermore, the 3D‐printed MXene‐N based supercapacitor manifests an areal capacitance of 8.2 F cm?2 for a three‐layered electrode and readily stores a high areal energy density of 0.42 mWh cm?2. The approach to harnessing such versatile MXene‐N inks offers distinctive insights into the printed energy storage systems with high areal energy density and large scalability.  相似文献   

12.
A third vitamin B12 binding protein present in normal serum has been shown to participate in transport of labelled vitamin B12 absorbed from the gut. All three vitamin B12 binding proteins in serum were labelled at the same time after oral administration of vitamin B12, implying that “free” vitamin B12 reached the portal blood from the gut mucosa.  相似文献   

13.
Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock’s feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.  相似文献   

14.
The effects of vitamin B12 deficiency in rats and dietary supplementation with vitamin B12 and/or l-methionine plus folate on the oxidation of compounds metabolized through folate coenzyme pathways were investigated. Rats fed a vitamin B12-deficient diet oxidized significantly lower amounts in 60 min of l-histidine, glycine, sarcosine, formate, and l-serine to CO2 than vitamin B12-supplemented controls. Supplementation of the deficient diet with l-methionine plus folate restored the ability to oxidize the ring-2-carbon of l-histidine, the methyl group of sarcosine, and formate to the same level as that observed in animals receiving vitamin B12. In contrast, oxidation of the 1-carbon of glycine and the 3-carbon of l-serine was not restored to control levels by addition of methionine plus folate to the vitamin B12-deficient diet. Inhibition of the metabolism of the 2-carbon of glycine to CO2 was partially overcome by additional dietary methionine and folate. Glycine synthase activity in homogenates paralleled the in vivo pattern of oxidation of the 1-carbon of glycine to CO2, whereas sarcosine dehydrogenase activity appeared to increase 2-fold in vitamin B12 deficiency.  相似文献   

15.
A simple and stable RNA aptamer-based colorimetric sensor for the detection of vitamin B12 using gold nanoparticles (AuNPs) has been proposed. Vitamin B12 belongs to the B vitamin group and prevents pernicious anemia, which is caused by vitamin B12 deficiency. A highly stable RNA aptamer that binds to vitamin B12 was employed by structural modification of 2′-hydroxyl group of ribose to 2′-flouro in all pyrimidines indicated in lowercase in 35-mer aptamer (5′ GGA Acc GGu GcG cAu AAc cAc cuc AGu GcG AGc AA 3′). Aggregation of AuNPs was specifically induced by desorption of the vitamin B12 binding RNA aptamer from the surface of AuNPs as a result of the aptamer–target interaction, leading to the color change from red to purple. The level of detection of vitamin B12 was 0.1 μg/ml by successful optimization of the amount of the aptamer, AuNPs, salts, and stability of the aptamer. Analysis of vitamin B12 was carried out, and the observed recovery was 92 to 95.3% with a relative standard deviation in the range of 2.08 to 8.27%. The results obtained were compared with those of the ultraviolet–visible (UV–vis) spectrometry method. This colorimetric aptasensor is advantageous for on-site detection with the naked eye.  相似文献   

16.
An extraction procedure was developed for determining vitamin B12, thiamine, and biotin contents of marine phytoplankton. Phytoplankters were collected either by centrifugation or by retention on a glass fiber filter, then heated at 100 C for I hr in 100 ml of vitamin-free seawater acidified to pH 3.5 with HCl. The extract, after debris removal, was filter-sterilized and analyzed, for vitamin B12, thiamine, and biotin with standard vitamin assay procedures. The vitamin contents of haeodactylum tricornutum, Skeletonema costatum, Stephanopyxis turris, and occolithus liuxleyi were determined during growth in batch cultures. P. tricornutum (non-vitamin requirer) growing in aerated cultures contained 0.29–0.96 ng B12, 5–15 ng thiamine, and 0.45–1.70 ng biotin/mg C. Under similar conditions S. costatum (B12-requirer) contained about 0.06 ng B12, 5–36 ng thiamine, and 0.16–2.10 ng biotin/mg C. The concentrations of vitamin were generally similar during some portion of the growth curve, eg, logarithmic growth. The vitamin B12, content of S. costatum growing under nonaerated conditions decreased when medium B12, was reduced. The biotin content did not change when medium B12 was decreased. The thiamine content per unit weight of C. huxleyi (thiamine-requirer) growing with either 10 or 120 ng/liter thiamine decreased under both medium concentrations, indicating no net synthesis of the vitamin.  相似文献   

17.
Relatively low concentrations of Vitamin B12 are known to accelerate the anaerobic biotransformation of carbon tetrachloride (CT) and chloroform (CF). However, the addition of vitamin B12 for field-scale bioremediation is expected to be costly. The present study considered a strategy to generate vitamin B12 by addition of biosynthetic precursors. One of the precursors, porphobilinogen (PB) involved in the formation of the corrin ring, significantly increased the CT biotransformation rates by 2.7−, 8.8- and 10.9-fold when supplemented at 160, 500 and 900 μM, respectively. A positive control with 10 μM of vitamin B12 resulted in a 5.9-fold increase in the CT-bioconversion rate. PB additions provided high molar yields of inorganic chloride (57% of CT organochlorine), comparable to that obtained with vitamin B12 supplemented cultures. The primary substrate, methanol, known to induce vitamin B12 production in methanogens and acetogens, was required for PB to have a significant impact on CT conversion. The observation suggests that PB’s role was due to stimulating vitamin B12 biosynthesis. The present study therefore provides insights on how to achieve vitamin B12 enhanced rates of CT bioremediation through the use of less complex compounds that are precursors of vitamin B12. Although PB is a costly chemical, its large impact points to corrin ring formation as the rate-limiting step.  相似文献   

18.
Vitamin-requiring marine algae, Cyclotella nana, Monochrysis lutheri, and Amphidinium carterae, were grown in batch culture with limiting concentrations of vitamin B12, thiamine, and biotin, respectively. Cell numbers, average cell volumes, biomasses, 11CO2 uptake rates, and chlorophyll a contents were determined daily. Maximum 14CO2 uptake rates in most vitamin concentrations were obtained at 2 days with C. nana and M. lutheri and at 4 days with A. carterae after starved cultures were exposed to the vitamin. Radiocarbon uptake rates approximately reflect biomass increases. Cell numbers were proportional to vitamin concentrations when cells were incubated for 2 to 3 more days. Cell sizes varied depending on time of incubation. Chlorophyll a content did not always reflect vitamin concentrations. Maximum carbon assimilation rates (Km) and saturation constants (Ks) determined from 14CO2, uptake rates in different vitamin concentrations during early incubation were higher than when determined from cell number in log phase growth. Dissolved vitamin B12, thiamine, and biotin in many samples of seawaters were in the ranges which influence the growth rate, cell size, and chlorophyll a content of C. nana, M. lutheri, and A. carterae, respectively, in laboratory studies. The effects of vitamins on these algae in situ may be similar.  相似文献   

19.
The accumulation of vitamin B12 by Bacillus badins grown on hydrocarbon was investigated. The bacterium could assimilate n-alkanes of C11–C18, ethanol, fumarate, α-ketoglutarate and malate. n-Alkanes of C16–C18, were the best for vitamin B12 production. The bacterium utilized well all of the nitrogen sources tested. Above all, ammonium dihydrogen phosphate was the best for the bacteria] growth and vitamin B12 production. Addition of organic nutrients such as malt extract and meat extract, and addition of metal ions such as ferrous and cobalt promoted the growth and vitamin B12 production. Interestingly, vitamin B12 was produced mostly in the supernatant. The cyanoform of the corrinoid predominantly formed in the supernatant would confirm the identity with cobalamin.  相似文献   

20.
Summary To improve the microbial production of vitamin B12, we applied a hollow-fiber module to cultivation of the vitamin producers. By the removal of growth inhibitors, very high concentrations of cells and vitamin B12 were obtained comparing to the batch culture. We obtained 227 g dry cells/l and 52 mg vitamin B12/l with Propionibacterium shermanii and 33.4 g dry cell/l and 92.5 mg vitamin B12/l with Butyribacterium methylotrophicum by this cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号