首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomolecules have been widely investigated as potential therapeutics for various diseases. However their use is limited due to rapid degradation and poor cellular uptake in vitro and in vivo. To address this issue, we synthesized a new nano-carrier system comprising of cholic acid-polyethylenimine (CA-PEI) copolymer micelles, via carbodiimide-mediated coupling for the efficient delivery of small interfering ribonucleic acid (siRNA) and bovine serum albumin (BSA) as model protein. The mean particle size of siRNA- or BSA-loaded CA-PEI micelles ranged from 100–150 nm, with zeta potentials of +3-+11 mV, respectively. Atomic force, transmission electron and field emission scanning electron microscopy demonstrated that the micelles exhibited excellent spherical morphology. No significant morphology or size changes were observed in the CA-PEI micelles after siRNA and BSA loading. CA-PEI micelles exhibited sustained release profile, the effective diffusion coefficients were successfully estimated using a mathematically-derived cylindrical diffusion model and the release data of siRNA and BSA closely fitted into this model. High siRNA and BSA binding and loading efficiencies (95% and 70%, respectively) were observed for CA-PEI micelles. Stability studies demonstrated that siRNA and BSA integrity was maintained after loading and release. The CA-PEI micelles were non cytotoxic to V79 and DLD-1 cells, as shown by alamarBlue and LIVE/DEAD cell viability assays. RT-PCR study revealed that siRNA-loaded CA-PEI micelles suppressed the mRNA for ABCB1 gene. These results revealed the promising potential of CA-PEI micelles as a stable, safe, and versatile nano-carrier for siRNA and the model protein delivery.  相似文献   

2.
In the present study we developed alginate-chitosan-poly(lactic-co-glycolic acid) (PLGA) composite microspheres to elevate protein entrapment efficiency and decrease its burst release. Bovine serum albumin (BSA), which used as the model protein, was entrapped into the alginate microcapsules by a modified emulsification method in an isopropyl alcohol-washed way. The rapid drug releases were sustained by chitosan coating. To obtain the desired release properties, the alginate-chitosan microcapsules were further incorporated in the PLGA to form the composite microspheres. The average diameter of the composite microcapsules was 31+/-9microm and the encapsulation efficiency was 81-87%, while that of conventional PLGA microspheres was just 61-65%. Furthermore, the burst releases at 1h of BSA entrapped in composite microspheres which containing PLGA (50:50) and PLGA (70:30) decreased to 24% and 8% in PBS, and further decreased to 5% and 2% in saline. On the contrary, the burst releases of conventional PLGA microspheres were 48% and 52% in PBS, respectively. Moreover, the release profiles could be manipulated by regulating the ratios of poly(lactic acid) to poly(glycolic acid) in the composite microspheres.  相似文献   

3.
Controlled release from biodegradable polymers is a novel approach to replace daily painful injections of protein drugs. A major obstacle to development of these polymers is the need to retain the structure and biological activity of encapsulated proteins during months of incubation under physiological conditions. We encapsulated bovine serum albumin (BSA) in injectable poly(DL-lactide- co-glycolide) (PLGA) 50/50 cylindrical implants and determined the mechanism of BSA instability. Simulations of the polymer microclimate revealed that moisture and acidic pH (<3) triggered unfolding of encapsulated BSA, resulting in peptide bond hydrolysis and noncovalent aggregation. To neutralize the acids liberated by the biodegradable lactic/glycolic acid-based polyester, we coincorporated into the polymer an antacid, Mg(OH)2, which increased microclimate pH and prevented BSA structural losses and aggregation for over one month. We successfully applied this stabilization approach in both cylinder- and microsphere-injectable configurations and for delivery of angiogenic basic fibroblast growth factor and bone-regenerating bone morphogenetic protein-2.  相似文献   

4.
This study investigated the processing parameters and formulation factors on the bioadhesive properties, temperature stability properties, and drug release properties of miconazole in PolyOx® and Klucel® matrix systems produced by Hot-melt Extrusion (HME) technology. Miconazole incorporated into these matrix systems were found to be stable for 8 months by X-ray diffraction (XRD). The addition of miconazole increased area under the curve (AUC) at contact time intervals of 30 and 60 sec, while the bioadhesion decreased with an increase in processing temperatures. The release profiles suggest that a sustained release of miconazole was observed from all of the tested HME film formulations for approximately 10 h. The release from the optimal HME film extruded at 205°C was found to be significantly different than that extruded at 190°C. Therefore, this matrix system may address the present shortcomings of currently available therapy for oral and pharyngeal candidiasis.  相似文献   

5.
Hot-melt extrusion (HME) is a promising technology for the production of new chemical entities in the developmental pipeline and for improving products already on the market. In drug discovery and development, industry estimates that more than 50% of active pharmaceutical ingredients currently used belong to the biopharmaceutical classification system II (BCS class II), which are characterized as poorly water-soluble compounds and result in formulations with low bioavailability. Therefore, there is a critical need for the pharmaceutical industry to develop formulations that will enhance the solubility and ultimately the bioavailability of these compounds. HME technology also offers an opportunity to earn intellectual property, which is evident from an increasing number of patents and publications that have included it as a novel pharmaceutical formulation technology over the past decades. This review had a threefold objective. First, it sought to provide an overview of HME principles and present detailed engineered extrusion equipment designs. Second, it included a number of published reports on the application of HME techniques that covered the fields of solid dispersions, microencapsulation, taste masking, targeted drug delivery systems, sustained release, films, nanotechnology, floating drug delivery systems, implants, and continuous manufacturing using the wet granulation process. Lastly, this review discussed the importance of using the quality by design approach in drug development, evaluated the process analytical technology used in pharmaceutical HME monitoring and control, discussed techniques used in HME, and emphasized the potential for monitoring and controlling hot-melt technology.  相似文献   

6.
Liu SQ  Yang YY  Liu XM  Tong YW 《Biomacromolecules》2003,4(6):1784-1793
Temperature-sensitive diblock copolymers, poly(N-isopropylacrylamide)-b-poly(D,L-lactide) (PNIPAAm-b-PLA) with different PNIPAAm contents were synthesized and utilized to fabricate microspheres containing bovine serum albumin (BSA, as a model protein) by a water-in-oil-in-water double emulsion solvent evaporation process. XPS analysis showed that PNIPAAm was a dominant component of the microspheres surface. BSA was well entrapped within the microspheres, and more than 90% encapsulation efficiency was achieved. The in vitro degradation behavior of microspheres was investigated using SEM, NMR, FTIR, and GPC. It was found that the microspheres were erodible, and polymer degradation occurred in the PLA block. Degradation of PLA was completed after 5 months incubation in PBS (pH 7.4) at 37 degrees C. A PVA concentration of 0.2% (w/v) in the internal aqueous phase yielded the microspheres with an interconnected porous structure, resulting in fast matrix erosion and sustained BSA release. However, 0.05% PVA produced the microspheres with a multivesicular internal structure wrapped with a dense skin layer, resulting in lower erosion rate and a biphasic release pattern of BSA that was characterized with an initial burst followed by a nonrelease phase. The microspheres made from PNIPAAm-b-PLA with a higher portion of PNIPAAm provided faster BSA release. In addition, BSA release from the microspheres responded to the external temperature changes. BSA release was slower at 37 degrees C (above the LCST) than at a temperature below the LCST. The microspheres fabricated with PNIPAAm-b-PLA having a 1:5 molar ratio of PNIPAAm to PLA and 0.2% (w/v) PVA in the internal aqueous phase provided a sustained release of BSA over 3 weeks in PBS (pH 7.4) at 37 degrees C.  相似文献   

7.
The purpose of this study was to investigate the effect of 2 additives, poly(ethylene glycol (PEG) 1000 and 1,2,3-tridecanoyl glycerol (tricaprin), on the physico-chemical characteristics and in vitro release of a model protein, bovine serum albumin (BSA), form poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres. BSA-loaded microspheres were prepared by the double emulsion solvent evaporation method. Additives were incorporated into microspheres to modify the release of protein. The addition of PEG 1000 and tricaprin changed the surface characteristics of microspheres from smooth and nonporous to porous and dimpled, respectively. The in vitro release profiles showed that the additives significantly (P<0.05) increased the early-stage release of BSA from microspheres.  相似文献   

8.
The current study involved the development of a novel sustained release crosslinked semi-IPN xerogel matrix tablet prepared by chemical crosslinking of poly(ethylene) oxide (PEO) and gellan gum (GG) employing epichlorohydrin (EPI) as crosslinker. A Box–Behnken design was employed for the statistical optimization of the matrix system to ascertain the ideal combination of native polymeric and crosslinking agents. Characterization studies were performed by employing standard polymer characterization techniques such as Fourier transform infrared spectrometry, differential scanning calorimetry, and scanning electron microscopy. Formulated matrix tablets displayed zero-order release kinetics, extending over 24 h. The mechanism of drug release was primarily by swelling and surface erosion. Crosslinked semi-IPN xerogel matrix tablets were compared to non-crosslinked polymer blends; results from the study conducted showed that the physiochemical properties of the PEO and GG were sufficiently modified to allow for sustained release of sulpiride with a 100% drug release at 24 h in a controlled manner as compared to non-crosslinked formulations which displayed further release beyond the test period. Crosslinked formulations displayed water uptake between 450 and 500% indicating a controlled rate of swelling and erosion allowing for sustained release. Surface morphology of the crosslinked system depicted a porous structure formed by interpenetrating networks of polymers, allowing for a greater degree of controlled penetration into the system affording it the ability to sustain drug release. Therefore, conclusively, based on the study performed, crosslinked PEO-GG allows for the sustained release of sulpiride from a hydrophilic semi-IPN xerogel matrix system.KEY WORDS: epichlorohydrin, matrix tablet, semi-interpenetrating polymer network, sustained release, sulpiride  相似文献   

9.
To develop materials with improved controllability and specificity, we have investigated composite hydrogels with temperature-sensitive properties using photo cross-linking. Specifically, our novel composite materials are composed of nanoparticles made of poly(N-isopropylacrylamide) (PNIPAAm), temperature-sensitive hydrogels, and a photo cross-linker, poly(ethylene glycol) diacrylate (PEGDA). PNIPAAm particles were synthesized by emulsion polymerization and by varying concentration of four main factors: monomers (N-isopropylacrylamide), cross-linkers (N,N'-methylenebisacrylamide), surfactants (sodium dodecyl sulfate, SDS), and initiators (potassium persulfate). We found that the surfactant, SDS, was the most important factor affecting the particle size using the factorial design analysis. Additionally, both nano- and micro-PNIPAAm particles had excellent loading efficiency (>80% of the incubated bovine serum albumin (BSA)), and their release kinetics expressed an initial burst effect followed by a sustained release over time. Furthermore, BSA-loaded PNIPAAm nanoparticles were used to form three-dimensional gel networks by means of a photocuring process using a photo cross-linker, PEGDA, and a photoinitiator, Irgacure-2959 (I-2959). Results from scanning electron microscopy and in vitro BSA release studies from these hydrogels demonstrated that PNIPAAm nanoparticles were embedded inside the PEG polymeric matrix and the composite material was able to release BSA in response to changes in temperature. These PNIPAAm nanoparticle hydrogel networks may have advantages in applications of controlled drug delivery systems because of their temperature sensitivity and their ability of in situ photopolymerization to localize at the specific region in the body.  相似文献   

10.
3D printing evolved as a promising technique to improve individualization of drug therapy. In particular, when printing sustained release solid dosage forms, as for instance implants, inserts, and also tablets, estimation of the drug release profile in vivo is necessary. In most cases, corresponding analyses cannot be performed at hospital or community pharmacies. Therefore, the present study aimed to develop a sustained release drug delivery system produced via 3D printing, which allows dose adaption and estimation of drug release at the same time. Filaments as feedstock for the printer were produced via hot-melt extrusion and consisted of Eudragit® RL as sustained release polymer, 30% theophylline as model active pharmaceutical ingredient, and stearic acid as solid plasticizer. Assuming that the surface/mass ratio was constant, network structures of different densities were printed as novel solid dosage form. Their weight (263 to 668 mg), thereby their dose, and surface area, determined using X-ray microcomputed tomography, showed a linear correlation with the fill density. The specific surface area of the network hardly varied with changing fill density. Dissolution studies showed a slower drug release for dosage forms with a denser network. Higuchi’s model was used for prediction of drug release and showed limited applicability due to different release kinetics for different fill densities. However, using linear interpolation for the prediction resulted in good RMSEP values between 1.4 and 3.7%. These findings might be useful to enable customized production of sustained release solid dosage forms via 3D printing in hospital and community pharmacies in the future.  相似文献   

11.
This work demonstrated the effect of two salts as potential simple formulation excipients in modifying hydration properties, phase behavior, and protein release from lecithin-based implants. In vitro release of a model protein, bovine serum albumin (BSA), from cylindrical-shaped lecithin and lecithin:cholesterol (1:1 w/w) implants containing 0, 10, or 30% w/w NaCl or CaCl2 was studied. In the absence of salts, BSA was released from lecithin and lecithin:cholesterol implants with a high monomer content and the release profiles were similar to those previously reported. Cholesterol increased the swelling, induced the formation of myelin structures, and reduced BSA release from the matrices. Addition of the salts to lecithin:cholesterol implants further enhanced the swelling, altered the hydrated morphology, and inhibited protein release. Analyses showed that BSA associated into multimers within these swollen lipid matrices but retained a high degree of protein native structure. Factors that may have contributed to the inhibition of the in vitro release included 1) the swollen multilamellar layers assembled as diffusional barriers, 2) adsorption of BSA onto the hydrated lipid vesicles, and 3) formation of protein aggregates.  相似文献   

12.
An oral sustained release dosage form of cinnarizine HCl (CNZ) based on gastric floating matrix tablets was studied. The release of CNZ from different floating matrix formulations containing four viscosity grades of hydroxypropyl methylcellulose, sodium alginate or polyethylene oxide, and gas-forming agent (sodium bicarbonate or calcium carbonate) was studied in simulated gastric fluid (pH 1.2). CNZ release data from the matrix tablets were analyzed kinetically using Higuchi, Peppas, Weibull, and Vergnaud models. From water uptake, matrix erosion studies, and drug release data, the overall release mechanism can be explained as a result of rapid hydration of polymer on the surface of the floating tablet and formation of a gel layer surrounding the matrix that controls water penetration into its center. On the basis of in vitro release data, batch HP1 (CNZ, HPMC-K100LV, SBC, LTS, and MgS) was subjected to bioavailability studies in rabbits and was compared with CNZ suspension. It was concluded that the greater bioavailability of HP1 was due to its longer retention in the gastric environment of the test animal. Batch no. HP1 of floating tablet in rabbits demonstrated that the floating tablet CNZ could be a 24-h sustained release formulation.  相似文献   

13.
Solvent extraction (or evaporation from a W(1)/O/W(2)-dispersion), coacervation, and spray drying methods are commonly employed to encapsulate protein drugs in polymeric microparticles for sustained delivery applications. To overcome the limitations of these methods, a novel electrospray method was developed to encapsulate a model protein drug-bovine serum albumin (BSA) in biodegradable polymeric microparticles and examine the feasibility of the process in not denaturing the protein. Microparticles of approximately 20 microm diameter with corrugated surfaces and smooth surfaces were observed by scanning electron microscope. Confocal laser scanning microscope images showed that BSA was distributed evenly in microparticles. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was employed to investigate the protein integrity of BSA released from the polymer matrix after 38 days. No protein degradation was observed during the 38 days release. The secondary structure of released BSA was characterized by Fourier transform infrared (FTIR) and circular dichroism (CD), which suggested that the released BSA was almost identical to native BSA. The encapsulation efficiency could reach 76% by adjusting the amount of the additive Pluronic F127 and processing parameters. The release profile could be tailored by the fabrication process and the sustained release of BSA could endure for more than 1 month. More than 80% of the bioactivity of BSA (evaluated by BSA ELISA kit) could be maintained after releasing from polymer matrix. Findings of the present study demonstrate that this novel electrospray method is a promising approach to encapsulate bioactive materials such as proteins, enzymes, antibiotics, and DNA fragments in biodegradable polymeric particles.  相似文献   

14.
Etoposide-loaded poly(lactic-co-glycolic acid) implants were developed for intravitreal application. Implants were prepared by a solvent-casting method and characterized in terms of content uniformity, morphology, drug-polymer interaction, stability, and sterility. In vitro drug release was investigated and the implant degradation was monitored by the percent of mass loss. Implants were inserted into the vitreous cavity of rabbits’ eye and the in vivo etoposide release profile was determined. Clinical examination and the Hen Egg Test-Chorioallantoic Membrane (HET-CAM) method were performed to evaluate the implant tolerance. The original chemical structure of the etoposide was preserved after incorporation in the polymeric matrix, which the drug was dispersed uniformly. In vitro, implants promoted sustained release of the drug and approximately 57% of the etoposide was released in 50 days. In vivo, devices released approximately 63% of the loaded drug in 42 days. Ophthalmic examination and HET-CAM assay revealed no evidence of toxic effects of implants. These results tend to show that etoposide-loaded implants could be potentially useful as an intraocular etoposide delivery system in the future.  相似文献   

15.
The purpose of the research was to evaluate Sterculia foetida gum as a hydrophilic matrix polymer for controlled release preparation. For evaluation as a matrix polymer; characterization of Sterculia foetida gum was done. Viscosity, pH, scanning electronmicrographs were determined. Different formulation aspects considered were: gum concentration (10–40%), particle size (75–420 μm) and type of fillers and those for dissolution studies; pH, and stirring speed were considered. Tablets prepared with Sterculia foetida gum were compared with tablets prepared with Hydroxymethylcellulose K15M. The release rate profiles were evaluated through different kinetic equations: zero-order, first-order, Higuchi, Hixon-Crowell and Korsemeyer and Peppas models. The scanning electronmicrographs showed that the gum particles were somewhat triangular. The viscosity of 1% solution was found to be 950 centipoise and pH was in range of 4–5. Suitable matrix release profile could be obtained at 40% gum concentration. Higher sustained release profiles were obtained for Sterculia foetida gum particles in size range of 76–125 μm. Notable influences were obtained for type of fillers. Significant differences were also observed with rotational speed and dissolution media pH. The in vitro release profiles indicated that tablets prepared from Sterculia foetida gum had higher retarding capacity than tablets prepared with Hydroxymethylcellulose K15M prepared tablets. The differential scanning calorimetry results indicated that there are no interactions of Sterculia foetida gum with diltiazem hydrochloride. It was observed that release of the drug followed through surface erosion and anomalous diffusion. Thus, it could be concluded that Sterculia foetida gum could be used a controlled release matrix polymer.  相似文献   

16.
Nanoparticles of approximately 10nm in diameter made with chitosan or lactic acid-grafted chitosan were developed for high drug loading and prolonged drug release. A drug encapsulation efficiency of 92% and a release rate of 28% from chitosan nanoparticles over a 4-week period were demonstrated with bovine serum protein. To further increase drug encapsulation, prolong drug release, and increase chitosan solubility in solution of neutral pH, chitosan was modified with lactic acid by grafting D,L-lactic acid onto amino groups in chitosan without using a catalyst. The lactic acid-grafted chitosan nanoparticles demonstrated a drug encapsulation efficiency of 96% and a protein release rate of 15% over 4 weeks. With increased protein concentration, the drug encapsulation efficiency decreased and drug release rate increased. Unlike chitosan, which is generally soluble only in acid solution, the chitosan modified with lactic acid can be prepared from solutions of neutral pH, offering an additional advantage of allowing proteins or drugs to be uniformly incorporated in the matrix structure with minimal or no denaturization.  相似文献   

17.
Three-dimensional printing is being steadily deployed as manufacturing technology for the development of personalized pharmaceutical dosage forms. In the present study, we developed a hollow pH-responsive 3D printed tablet encapsulating drug loaded non-coated and chitosan-coated alginate beads for the targeted colonic delivery of 5-fluorouracil (5-FU). A mixture of Eudragit® L100-55 and Eudragit® S100 was fabricated by means of hot-melt extrusion (HME) and the produced filaments were printed utilizing a fused deposition modeling (FDM) 3D printer to form the pH-responsive layer of the tablet with the rest comprising of a water-insoluble poly-lactic acid (PLA) layer. The filaments and alginate particles were characterized for their physicochemical properties (thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction), their surface topography was visualized by scanning electron microscopy and the filaments’ mechanical properties were assessed by instrumented indentation testing and tensile testing. The optimized filament formulation was 3D printed and the structural integrity of the hollow tablet in increasing pH media (pH 1.2 to pH 7.4) was assessed by means of time-lapsed microfocus computed tomography (μCT). In vitro release studies demonstrated controlled release of 5-FU from the alginate beads encapsulated within the hollow pH-sensitive tablet matrix at pH values corresponding to the colonic environment (pH 7.4). The present study highlights the potential of additive manufacturing in fabricating controlled-release dosage forms rendering them pertinent formulations for further in vivo evaluation.  相似文献   

18.
The objective of this study was to investigate the sustained release of a hydrophilic drug, montelukast (MK), from two biodegradable polymeric drug delivery systems, in situ implant (ISI) and in situ microparticles (ISM). N-Methyl pyrrolidone (NMP), dimethyl sulfoxide (DMSO), triacetin, and ethyl acetate were selected as solvents. The release of 10% (w/v) MK from both systems containing poly-lactic-co-glycolic acid (PLGA) as the biodegradable polymer was compared. Upon contact with the aqueous medium, the PLGA in ISI and ISM systems solidified resulting in implants and microparticles, respectively. The in vitro drug release from the ISI system showed marked difference from miscible solvents (NMP and DMSO) than the partially miscible ones (triacetin and ethyl acetate), and the drug release decreased with increased PLGA concentration. In the ISM system, the initial in vitro drug release decreased with decreased ratio of polymer phase to external oil phase. In vivo studies in rats showed that ISM had slower drug release than the drug release from ISI. Also, the ISM system when compared to ISI system had significantly reduced initial burst effect. In vitro as well as the in vivo studies for both ISI and ISM systems showed sustained release of MK. The ISM system is suitable for sustained release of MK over 4-week period with a lower initial burst compared to the ISI system. Stability studies of the ISI and ISM formulations showed that MK is stable in the formulations stored at 4°C for more than 2 years.  相似文献   

19.
目的:通过选择不同的模型蛋白,探讨准确的研究静电纺丝纳米纤维支架的体外释放和快速的测定蛋白活性的方法.方法:通过O/W乳液法静电纺丝制备纳米纤维,并用扫描电镜对纳米纤维表面进行了表征.以GM-CSF为模型蛋白,采用ELISA双抗体夹心法考察纤维的体外释放行为;以BSA为模型蛋白,用SEC-H-PLC比较纤维制备前后蛋白的聚集情况;以β-半乳糖苷酶为模型蛋白,用ONPG法比较纤维制备前后酶的催化活性.结果:纤维表面平滑,直径均一,呈现互相连通的三维网状结构.纤维在5天内释放90%以上;纤维中回收的BSA单体比例为66.53%;β-半乳糖苷酶在纤维中的催化活性保持原活性的3.37%.结论:通过选择不同的模型蛋白,能够准确的测定静电纺丝纤维的体外释放,快速的考察纤维中的蛋白活性,对于更好的研究蛋白药物纳米纤维支架具有重要的参考价值.  相似文献   

20.
The objectives were to characterize propranolol hydrochloride-loaded matrix tablets using guar gum, xanthan gum, and hydroxypropylmethylcellulose (HPMC) as rate-retarding polymers. Tablets were prepared by wet granulation using these polymers alone and in combination, and physical properties of the granules and tablets were studied. Drug release was evaluated in simulated gastric and intestinal media. Rugged tablets with appropriate physical properties were obtained. Empirical and semi-empirical models were fit to release data to elucidate release mechanisms. Guar gum alone was unable to control drug release until a 1:3 drug/gum ratio, where the release pattern matched a Higuchi profile. Matrix tablets incorporating HPMC provided near zero-order release over 12 h and erosion was a contributing mechanism. Combinations of HPMC with guar or xanthan gum resulted in a Higuchi release profile, revealing the dominance of the high viscosity gel formed by HPMC. As the single rate-retarding polymer, xanthan gum retarded release over 24 h and the Higuchi model best fit the data. When mixed with guar gum, at 10% or 20% xanthan levels, xanthan gum was unable to control release. However, tablets containing 30% guar gum and 30% xanthan gum behaved as if xanthan gum was the sole rate-retarding gum and drug was released by Fickian diffusion. Release profiles from certain tablets match 12-h literature profiles and the 24-h profile of Inderal® LA. The results confirm that guar gum, xanthan gum, and HPMC can be used for the successful preparation of sustained release oral propranolol hydrochoride tablets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号