首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The previously observed extensive sequence heterogeneity of the kinetoplast minicircle DNA in Trypanosoma cruzi, both intra- and interstrain, has raised the question as to how the minicircle DNA in this species can have any guide RNA (gRNA)-coding capacity at all, because there do not appear to be any variable-region sequences conserved between different strains. To address this question, we obtained the complete edited sequence of maxicircle unidentified reading frame 4 mRNA and identified 25 cognate gRNAs from gRNA libraries constructed from two clonal strains of T. cruzi--Sylvio X10/CL1 and CAN III/CL1. Libraries of PCR-amplified minicircle-variable regions were also constructed for both strains. A single gene for each gRNA was identified in the same polarity within specific minicircle-variable regions from both strains, 60-100 nt downstream from the conserved 12mer sequence. GTP-capped total gRNA from one strain failed to cross-hybridize with minicircle DNA from the other strain. The explanation for this proved to be the number of polymorphisms, mainly transitions, within the homologous gRNAs in the two strains. In most cases, these transitions did not destroy the edited mRNA/gRNA base pairing, as a result of the allowed G-U wobble base pairing. The sequences of the variable regions containing homologous gRNAs in the two strains probably derived from an ancestral sequence, and each has accumulated sufficient polymorphisms so as not to allow hybridization. Within a strain, multiple redundant gRNAs were identified that encode identical editing information but have different sequences.  相似文献   

3.
D A Maslov  L Simpson 《Cell》1992,70(3):459-467
Seventeen kinetoplast minicircle-encoded and nine maxicircle-encoded gRNA genes have been identified. Six overlapping minicircle-encoded gRNAs mediate editing for the 5'-pan-edited MURF4 gene and two for the 5'-edited COIII gene. The pan-edited RPS12 mRNA is edited by seven minicircle-encoded gRNAs and one maxicircle-encoded gRNA. The 3'-most gRNA in each domain forms an anchor with unedited mRNA, whereas upstream gRNAs form anchors only with edited mRNA, thereby explaining the observed 3' to 5' polarity of editing within an editing domain. We suggest that a role of G-U base pairs is to allow breathing of the edited mRNA-gRNA hybrid and formation of the upstream anchor hybrid.  相似文献   

4.
5.
Hong M  Simpson L 《Protist》2003,154(2):265-279
The sequences of seven new Trypanosoma brucei kinetoplast DNA minicircles were obtained. A detailed comparative analysis of these sequences and those of the 18 complete kDNA minicircle sequences from T. brucei available in the database was performed. These 25 different minicircles contain 86 putative gRNA genes. The number of gRNA genes per minicircle varies from 2 to 5. In most cases, the genes are located between short imperfect inverted repeats, but in several minicircles there are inverted repeat cassettes that did not contain identifiable gRNA genes. Five minicircles contain single gRNA genes not surrounded by identifiable repeats. Two pairs of closely related minicircles may have recently evolved from common ancestors: KTMH1 and KTMH3 contained the same gRNA genes in the same order, whereas KTCSGRA and KTCSGRB contained two gRNA genes in the same order and one gRNA gene specific to each. All minicircles could be classified into two classes on the basis of a short substitution within the highly conserved region, but the minicircles in these two classes did not appear to differ in terms of gRNA content or gene organization. A number of redundant gRNAs containing identical editing information but different sequences were present. The alignments of the predicted gRNAs with the edited mRNA sequences varied from a perfect alignment without gaps to alignments with multiple mismatches. Multiple gRNAs overlapped with upstream gRNAs, but in no case was a complete set of overlapping gRNAs covering an entire editing domain obtained. We estimate that a minimum set of approximately 65 additional gRNAs would be required for complete overlapping sets. This analysis should provide a basis for detailed studies of the evolution and role in RNA editing of kDNA minicircles in this species.  相似文献   

6.
7.
8.
N R Sturm  L Simpson 《Cell》1990,61(5):879-884
Guide RNAs (gRNAs) for the editing of sites 1-8 of COIII mRNA and an "unexpected" partially edited COIII mRNA are encoded in the variable regions of specific kinetoplast DNA minicircles. The gRNAs can form 37 and 44 nucleotide perfect hybrids (allowing for G-U base pairs) with edited mRNAs. The gRNAs were detected on Northern blots and shown to have unique 5' ends situated close to the beginning of the potential base pairing with the edited mRNAs. We suggest that kinetoplast DNA minicircle molecules in general may encode gRNAs for editing of cryptogene mRNAs by a mechanism similar to that previously proposed for editing by maxicircle-encoded gRNAs.  相似文献   

9.
10.
11.
12.
In the mitochondria of trypanosomatids, the majority of mRNAs undergo massive uracil-insertion/deletion editing. Throughout the processes of pre-mRNA polyadenylation, guide RNA (gRNA) uridylylation and annealing to mRNA, and editing reactions, several multiprotein complexes must engage in transient interactions to produce a template for protein synthesis. Here, we report the identification of a protein complex essential for gRNA stability. The gRNA-binding complex (GRBC) interacts with gRNA processing, editing, and polyadenylation machineries and with the mitochondrial edited mRNA stability (MERS1) factor. RNAi knockdown of the core subunits, GRBC1 and GRBC2, led to the elimination of gRNAs, thus inhibiting mRNA editing. Inhibition of MERS1 expression selectively abrogated edited mRNAs. Homologous proteins unique to the order of Kinetoplastida, GRBC1 and GRBC2, form a stable 200 kDa particle that directly binds gRNAs. Systematic analysis of RNA-mediated and RNA-independent interactions involving the GRBC and MERS1 suggests a unified model for RNA processing in the kinetoplast mitochondria.  相似文献   

13.
14.
15.
Organization of minicircle genes for guide RNAs in Trypanosoma brucei   总被引:23,自引:0,他引:23  
  相似文献   

16.
17.
18.
Mitochondrial mRNAs in kinetoplastids require extensive U-insertion/deletion editing that progresses 3′-to-5′ in small blocks, each directed by a guide RNA (gRNA), and exhibits substrate and developmental stage-specificity by unsolved mechanisms. Here, we address compositionally related factors, collectively known as the mitochondrial RNA-binding complex 1 (MRB1) or gRNA-binding complex (GRBC), that contain gRNA, have a dynamic protein composition, and transiently associate with several mitochondrial factors including RNA editing core complexes (RECC) and ribosomes. MRB1 controls editing by still unknown mechanisms. We performed the first next-generation sequencing study of native subcomplexes of MRB1, immunoselected via either RNA helicase 2 (REH2), that binds RNA and associates with unwinding activity, or MRB3010, that affects an early editing step. The particles contain either REH2 or MRB3010 but share the core GAP1 and other proteins detected by RNA photo-crosslinking. Analyses of the first editing blocks indicate an enrichment of several initiating gRNAs in the MRB3010-purified complex. Our data also indicate fast evolution of mRNA 3′ ends and strain-specific alternative 3′ editing within 3′ UTR or C-terminal protein-coding sequence that could impact mitochondrial physiology. Moreover, we found robust specific copurification of edited and pre-edited mRNAs, suggesting that these particles may bind both mRNA and gRNA editing substrates. We propose that multiple subcomplexes of MRB1 with different RNA/protein composition serve as a scaffold for specific assembly of editing substrates and RECC, thereby forming the editing holoenzyme. The MRB3010-subcomplex may promote early editing through its preferential recruitment of initiating gRNAs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号