首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sunitinib malate (SM) is reported as a weakly soluble drug in water due to its poor dissolution rate and oral bioavailability. Hence, in the current study, various “self-nanoemulsifying drug delivery systems (SNEDDS)” of SM were prepared, characterized and evaluated for the enhancement of its in vitro dissolution rate and anticancer efficacy. On the basis of solubilization potential of SM in various excipients, “Lauroglycol-90 (oil), Triton-X100 (surfactant) and Transcutol-P (cosurfactant)” were selected for the preparation of SM SNEDDS. SM-loaded SNEDDS were developed by spontaneous emulsification method, characterized and evaluated for “thermodynamic stability, self-nanoemulsification efficiency, droplet size, polydispersity index (PDI), zeta potential (ZP), surface morphology, refractive index (RI), the percent of transmittance (% T) and drug release profile.” In vitro dissolution rate of SM was significantly enhanced from an optimized SNEDDS in comparison with SM suspension. The optimized SNEDDS of SM with droplet size of 42.3 nm, PDI value of 0.174, ZP value of ?36.4 mV, RI value of 1.339, % T value of 97.3%, and drug release profile of 95.4% (after 24 h via dialysis membrane) was selected for in vitro anticancer efficacy in human colon cancer cells (HT-29) by MTT assay. MTT assay indicated significant anticancer efficacy of optimized SM SNEDDS against HT-29 cells in comparison with free SM. The results of this study showed the great potential of SNEDDS in the enhancement of in vitro dissolution rate and anticancer efficacy of poorly soluble drug such as SM.  相似文献   

2.
The objective of this study was to develop proliposomes and self-nanoemulsifying drug delivery system (SNEDDS) for a poorly bioavailable drug, valsartan, and to compare their in vivo pharmacokinetics. Proliposomes were prepared by thin-film hydration method using different lipids such as soy phosphatidylcholine (SPC), hydrogenated soy phosphatidylcholine (HSPC), distearyl phosphatidylcholine (DSPC), dimyristoylphosphatidylcholine (DMPC), and dimyristoyl phosphatidylglycerol sodium (DMPG) and cholesterol in various ratios. SNEDDS formulations were prepared using varying concentrations of capmul MCM, labrafil M 2125, and Tween 80. Both proliposomes and SNEDDS were evaluated for particle size, zeta potential, in vitro drug release, in vitro permeability, and in vivo pharmacokinetics. In vitro drug release was carried out in purified water and 0.1 N HCl using USP type II dissolution apparatus. In vitro drug permeation was studied using parallel artificial membrane permeation assay (PAMPA) and everted rat intestinal permeation techniques. Among the formulations, the proliposomes with drug/DMPG/cholesterol in the ratio of 1:1:0.5 and SNEDDS with capmul MCM (16.0% w/w), labrafil M 2125 (64.0% w/w), and Tween 80 (18.0% w/w) showed the desired particle size and zeta potential. Enhanced drug release was observed with proliposomes and SNEDDS as compared to pure valsartan. Valsartan permeability across PAMPA and everted rat intestinal permeation models was significantly higher with proliposomes and SNEDDS. Following single oral administration of proliposomes and SNEDDS, a relative bioavailability of 202.36 and 196.87%, respectively, was achieved compared to pure valsartan suspension. The study results indicated that both proliposomes and SNEDDS formulations are comparable in improving the oral bioavailability of valsartan.  相似文献   

3.
This study aims to formulate and evaluate bioavailability of a self-nanoemulsified drug delivery system (SNEDDS) of a poorly water-soluble herbal active component oleanolic acid (OA) for oral delivery. Solubility of OA under different systems was determined for excipient selection purpose. Four formulations, where OA was fixed at the concentration of 20 mg/g, were prepared utilizing Sefsol 218 as oil phase, Cremophor EL and Labrasol as primary surfactants, and Transcutol P as cosurfactant. Pseudo-ternary phase diagrams were constructed to identify self-emulsification regions for the rational design of SNEDDS formulations. Sefsol 218 was found to provide the highest solubility among all medium-chained oils screened. Efficient self-emulsification was observed for the systems composing of Cremophor EL and Labrasol. The surfactant to cosurfactant ratio greatly affected the droplet size of the nanoemulsion. Based on the outcomes in dissolution profiles, stability data, and particle size profiles, three optimized formulations were selected: Sefsol 218/Cremophor EL/Labrasol (50:25:25, w/w), Sefsol 218/Cremophor EL/Labrasol/Transcutol P (50:20:20:10, w/w), and Sefsol 218/Cremophor EL/Labrasol/Transcutol P (50:17.5:17.5:15, w/w). Based on the conventional dissolution method, a remarkable increase in dissolution was observed for the SNEDDS when compared with the commercial tablet. The oral absorption of OA from SNEDDS showed a 2.4-fold increase in relative bioavailability compared with that of the tablet (p < 0.05), and an increased mean retention time of OA in rat plasma was also observed compared with that of the tablet (p < 0.01). These results suggest the potential use of SNEDDS to improve dissolution and oral bioavailability for poorly water-soluble triterpenoids such as OA.  相似文献   

4.
The objective of this work was to develop a self-microemulsifying drug delivery system (SMEDDS) for improving oral absorption of poorly water-soluble drug, silymarin. The pseudo-ternary phase diagrams were constructed using ethyl linoleate, Cremophor EL, ethyl alcohol, and normal saline to identify the efficient self-microemulsification region. The particle size and its distribution of the resultant microemulsions were determined using dynamic light scattering. The optimal formulation with the best self-microemulsifying and solubilization ability consisted of 10% (w/w) of ethyl linoleate, 30% of Cremophor EL, and 60% of ethyl alcohol. The release of silymarin from SMEDDS was significantly faster than that from the commercial silymarin preparation hard capsule (Legalon®). The bioavailability results indicated that the oral absorption of silymarin SMEDDS was enhanced about 2.2-fold compared with the hard capsule in fasted dogs. It could be concluded that SMEDDS would be a promising drug delivery system for poorly water-soluble drugs by the oral route.  相似文献   

5.
The aim of this work was to develop self-nanoemulsifying liquisolid tablets (SNELT) to enhance the dissolution profile of poorly water-soluble simvastatin. SNELT present a unique technique of incorporating self-nanoemulsifying drug delivery systems (SNEDDS) into tablets. Optimized SNEDDS containing different oils, Cremophor® RH 40 (surfactant) and Transcutol® HP (co-surfactant), at different ratios, were used as liquid vehicles and loaded on carrier material, microcrystalline cellulose (MCC), and coating material, Cab-o-sil® H-5 (nanosize colloidal silicon dioxide) powders at different loading factors (L f ) and fixed excipient ratio (R?=?20). The effect of using different carrier materials, granulated mannitol, crystalline mannitol, and maltodextrin with MCC at different ratios, and different coating materials, Aeroperl® 300 (granulated silicon dioxide) at different excipient ratios (R), was also emphasized. Liquisolid powders with acceptable flowability, compressibility, and tablet weight were compressed into tablets. Results revealed that powders with L f ?=?0.2 possessed the most preferable properties to be tableted. SNELT with MCC and Cab-o-sil® H-5 were able to generate nanoemulsions and to enhance the cumulative percent of drug dissolved at 60 min significantly to reach up to 90%. Furthermore, using carrier material (granulated mannitol/MCC at ratio 3:1) enabled SNELT to disperse into nanoemulsion (Z-average?=?25.7 nm) and improved the dissolution profile significantly to reach 99% at 60 min. Cab-o-sil® H-5 proved to be a better coating material compared to Aeroperl® 300. In conclusion, developed SNELT were promising in enhancing in vitro dissolution of simvastatin and excipients highly affect SNELT’s performance.  相似文献   

6.
Predictive in vitro test methods addressing the parameters relevant to drug release in the pediatric gastrointestinal tract could be an appropriate means for reducing the number of in vivo studies in children. However, dissolution models addressing the particular features of pediatric gastrointestinal physiology and typical pediatric dosing scenarios have not yet been described. The objective of the present study was to combine the knowledge on common vehicle types and properties and current information on pediatric gastrointestinal physiology to design a dissolution model that enables a biorelevant simulation of the gastrointestinal conditions in young children. The novel dissolution setup consists of a miniaturized dissolution system allowing the use of small fluid volumes, physiological bicarbonate-based test media, and a proper pH control during the experiment using a pHysio-stat® device. Following design and assembly of the novel in vitro setup, a set of experiments screening in vitro drug release from a valproate-extended release formulation under typical dosing conditions in infants was performed. In vitro drug release profiles indicated a controlled drug release of the test product over 12 h and were in good agreement with information given in the Summary of Product Characteristics and the Patient Information Leaflet, as well as with results from an in vivo food effect study performed with the same product and reported in the literature. The new dissolution setup thus represents a promising in vitro screening tool in the development of pediatric dosage forms and may help to reduce the number of pharmacokinetic studies in children.  相似文献   

7.
This study described a pH-gradient dissolution method combined with flux measurements as an in vitro tool for assessing the risk of bioavailability reduction due to drug-drug interactions (DDI) caused by acid reducing agents (ARAs). The device incorporates absorption chambers into USP II dissolution vessels, with fiber optic UV-probes monitoring concentration in situ. Dosage forms of Genentech BCS class II drugs, GDC-0810, GDC-0941, and compound A, were tested by starting the dissolution in either pH 1.6 or pH 4.0 media then converting to FaSSIF after 30 min. GDC-0810 showed no significant difference in flux between the two conversion experiments. A supersaturation phase was observed for GDC-0941 in the pH 1.6 experiments after media conversion to FaSSIF; however, it did not appear to occur in the pH 4.0 experiment due to low drug solubility at pH 4.0, resulting in a 95% decrease in flux compared to pH 1.6 experiment. The extent of flux reduction and the total accumulated API mass in the absorption chamber agreed well with the 89% reduction in mean Cmax and the 82% reduction in mean AUC from dog PK study between animals treated with pentagastrin and famotidine. Testing of the compound A optimized formulation tablets showed a 25% reduction in flux and in vitro absorbed amount by changing pH 1.6 to 4.0, correlating well with the AUC decrease in clinical studies. Good correlation between in vitro data and in vivo PK data demonstrated the applicability of the method for formulators to develop drug products mitigating DDI from ARAs.  相似文献   

8.
Celecoxib (CXB) is a poorly aqueous solubility sulfonamide non-steroidal anti-inflammatory drug (NSAID). Hence, the formulation of CXB was selected for solubilization and bioavailability. To find out suitable formulation for microemulsion, the solubility of CXB in triacetin (oil phase), Tween 80 (surfactant), and Transcutol-P (co-surfactant) was screened respectively and optimized by using orthogonal experimental design. The Km value and concentration of oil, Smix, and water were confirmed by pseudo-ternary phase diagram studies and central composite design. One percent carbopol 934 was added to form CXB microemulsion-based gel. The final formulation was evaluated for its appearance, pH, viscosity, stability, drug content determination, globule size, and zeta potential. Its ex vivo drug permeation and the in vivo pharmacokinetic was investigated. Further research was performed to ensure the safety and validity by skin irritation study and in vivo anti-inflammatory activity study. Ex vivo permeation study in mice was designed to compare permeation and transdermal ability between microemulsion formulation and conventional gel. The results revealed that optimized microemulsion-based gel gained higher permeation based on smaller globule size and high drug loading of microemulsion. Transdermal ability was also greatly improved. Bioavailability was compared to market Celebrex® by the in vivo pharmacokinetic study in rabbits. The results indicated that CXB microemulsion-based gel had better bioavailability than Celebrex®.  相似文献   

9.
The objective of the present studies was systematic development of floating-bioadhesive gastroretentive tablets of cefuroxime axetil employing rational blend of hydrophilic polymers for attaining controlled release drug delivery. As per the QbD-based approach, the patient-centric target product profile and quality attributes of tablet were earmarked, and preliminary studies were conducted for screening the suitability of type of polymers, polymer ratio, granulation technique, and granulation time for formulation of tablets. A face-centered cubic design (FCCD) was employed for optimization of the critical material attributes, i.e., concentration of release controlling polymers, PEO 303 and HPMC K100 LV CR, and evaluating in vitro buoyancy, drug release, and ex vivo mucoadhesion strength. The optimized formulation was embarked upon through numerical optimization, which yield excellent floatation characteristic with drug release control (i.e., T 60%?>?6 h) and bioadhesion strength. Drug-excipient compatibility studies through FTIR and P-XRD revealed the absence of any interaction between the drug and polymers. In vivo evaluation of the gastroretentive characteristics through X-ray imaging and in vivo pharmacokinetic studies in rabbits revealed significant extension in the rate of drug absorption (i.e., T max, K a, and MRT) from the optimized tablet formulation as compared to the marketed formulation. Successful establishment of various levels of in vitro/in vivo correlations (IVIVC) substantiated high degree of prognostic ability of in vitro dissolution conditions in predicting the in vivo performance. In a nutshell, the studies demonstrate successful development of the once-a-day gastroretentive formulations of cefuroxime axetil with controlled drug release profile and improved compliance.  相似文献   

10.
To evaluate the possibility of improved drug delivery of quetiapine fumarate (QTP), a nanoemulsion system was developed for intranasal delivery. Effects of different HLBs of Emalex LWIS 10, PEG 400 and Transcutol P, as co-surfactants, were studied on isotropic region of pseudoternary-phase diagrams of nanoemulsion system composed of capmul MCM (CPM) as oil phase, Tween 80 as surfactant and water. Phase behaviour, globule size, transmission electron microscope (TEM) photographs and brain-targeting efficiency of quetiapine nanoemulsion were investigated. In vitro dissolution study of optimised nanoemulsion formulation, with mean diameter 144?±?0.5 nm, showed more than twofold increase in drug release as compared with pure drug. According to results of in vivo tissue distribution study in Wistar rats, intranasal administration of QTP-loaded nanoemulsion had shorter T max compared with that of intravenous administration. Higher drug transport efficiency (DTE%) and direct nose-to-brain drug transport (DTP%) was achieved by nanoemulsion. The nanoemulsion system may be a promising strategy for brain-targeted delivery of QTP.  相似文献   

11.
This work aimed to develop and optimize several lipid nanocapsule formulations (LNCs) to encapsulate cisplatin (CDDP) for treatment of hepatocellular carcinoma. By comparing the effect of oil/surfactant ratio, lecithin content, and oil/surfactant type on LNC characteristics, two LNCs were selected as optimal formulations: HS15-LNC (Solutol HS 15/MCT/lecithin, 54.5:42.5:3%, w/w) and EL-LNC (Cremophor EL/MCT/lecithin, 54.5:42.5:3%, w/w). Both LNCs could effectively encapsulate CDDP with the encapsulation efficiency of 73.48 and 78.84%. In vitro release study showed that both LNCs could sustain the release CDDP. Moreover, cellular uptake study showed that C6-labeled LNCs could be effectively internalized by HepG2 cells. Cellular cytotoxicity study revealed that both LNCs showed negligible cellular toxicity when their concentrations were below 313 μg/mL. Importantly, CDDP-loaded LNCs exhibited much stronger cell killing potency than free CDDP, with the IC50 values decreased from 17.93 to 3.53 and 5.16 μM after 72-h incubation. In addition, flow cytometric analysis showed that the percentage of apoptotic cells was significantly increased after treatment with LNCs. Therefore, the prepared LNC formulations exhibited promising anti-hepatocarcinoma effect, which could be beneficial to hepatocellular carcinoma therapy.  相似文献   

12.
The present studies entail formulation development of novel solid self-nanoemulsifying drug delivery systems (S-SNEDDS) of valsartan with improved oral bioavailability, and evaluation of their in vitro and in vivo performance. Preliminary solubility studies were carried out and pseudoternary phase diagrams were constructed using blends of oil (Capmul MCM), surfactant (Labrasol), and cosurfactant (Tween 20). The SNEDDS were systematically optimized by response surface methodology employing 33-Box–Behnken design. The prepared SNEDDS were characterized for viscocity, refractive index, globule size, zeta potential, and TEM. Optimized liquid SNEDDS were formulated into free flowing granules by adsorption on the porous carriers like Aerosil 200, Sylysia (350, 550, and 730) and Neusilin US2, and compressed into tablets. In vitro dissolution studies of S-SNEDDS revealed 3–3.5-fold increased in dissolution rate of the drug due to enhanced solubility. In vivo pharmacodynamic studies in Wistar rats showed significant reduction in mean systolic BP by S-SNEDDS vis-à-vis oral suspension (p < 0.05) owing to the drug absorption through lymphatic pathways. Solid-state characterization of S-SNEDDS using FT-IR and powder XRD studies confirmed lack of any significant interaction of drug with lipidic excipients and porous carriers. Further, the accelerated stability studies for 6 months revealed that S-SNEDDS are found to be stable without any change in physiochemical properties. Thus, the present studies demonstrated the bioavailability enhancement potential of porous carriers based S-SNEDDS for a BCS class II drug, valsartan.KEY WORDS: BCS, bioavailability, in vitro dissolution, porous carriers, XRD  相似文献   

13.
The aim of the present work is to answer the question is it possible to replace the ester prodrug candesartan cilexetil (CC) by its active metabolite candesartan (C) to bypass the in vivo variable effect of esterase enzymes. A comparative physicochemical evaluation was conducted through solubility, dissolution, and stability studies; additionally, ex vivo permeation and in vivo studies were assessed. C demonstrated higher solubility over CC at alkaline pH. Moreover, dissolution testing using the pharmacopeial method showed better release profile of C even in the absence of surfactant in the testing medium. Both drugs demonstrated a slight degradation in acidic pH after short-term stability. Instead, shifting to alkaline pH of 6.5 and 7.4 showed superiority of C solution stability compared to CC solution. The ex vivo permeation results demonstrated that the parent compound C has a significant (P < 0.05) enhanced permeation compared to its prodrug from CC, that agreed with in vivo results in which C suspension reached significantly (P < 0.05) higher C max of 1.39 ± 0.59 μg/mL at T max of 0.66 ± 0.11 h, while CC suspension reached C max of 0.47 ± 0.22 μg/mL at T max of 2.00 ± 0.27 h, a lag period of 40 min is needed prior to detection of any absorbed CC in plasma. Those findings are not in agreement with the previously reported rationale on the prodrug formation owing to the poor permeability of the parent compound, suggesting the possibility of marketing the parent drug candesartan for clinical use similarly to azilsartan and its prodrug.  相似文献   

14.
Self-nanoemulsifying drug delivery system (SNEDDS) can be used to improve dissolution of poorly water-soluble drugs. The objective of this study was to prepare SNEDDS by using ternary phase diagram and investigate their spontaneous emulsifying property, dissolution of nifedipine (NDP), as well as the pharmacokinetic profile of selected SNEDDS formulation. The results showed that the composition of the SNEDDS was a great importance for the spontaneous emulsification. Based on ternary phase diagram, the region giving the SNEDDS with emulsion droplet size of less than 300 nm after diluting in aqueous medium was selected for further formulation. The small-angle X-ray scattering curves showed no sharp peak after dilution at different percentages of water, suggesting non-ordered structure. The system was found to be robust in different dilution volumes; the droplet size was in nanometer range. In vitro dissolution study showed remarkable increase in dissolution of NDP from SNEDDS formulations compared with NDP powders. The pharmacokinetic study of selected SNEDDS formulation in male Wistar rats revealed the improved maximum concentration and area under the curve. Our results proposed that the developed SNEDDS formations could be promising to improve the dissolution and oral bioavailability of NDP.KEY WORDS: nifedipine, poorly water-soluble drug, self-emulsifying drug delivery system, spontaneous emulsification  相似文献   

15.
For a dissolution method to be considered relevant to in vivo performance, the dissolution data profiles should show discrimination or meaningful change when there is a change in critical material attributes (CMAs) and critical product properties (CPPs). The dissolution test has been shown repeatedly to have the power to distinguish between significant changes in active pharmaceutical ingredient (API), formulation, and process that relate to the release mechanism of the in vivo performance. Examples will be discussed in the literature where the effects of formulation, drug substance, and manufacturing variables have been measured by dissolution testing. There will be a suggested plan on how to develop and challenge a discriminating method that may be utilized for regulatory purposes. A brief review of other challenges and considerations regarding discriminatory dissolution testing is presented.  相似文献   

16.
Carvedilol, a beta-adrenergic blocker, suffers from poor systemic availability (25%) due to first-pass metabolism. The aim of this work was to improve carvedilol bioavailability through developing carvedilol-loaded solid lipid nanoparticles (SLNs) for nasal administration. SLNs were prepared by emulsion/solvent evaporation method. A 23 factorial design was employed with lipid type (Compritol or Precirol), surfactant (1 or 2% w/v poloxamer 188), and co-surfactant (0.25 or 0.5% w/v lecithin) concentrations as independent variables, while entrapment efficiency (EE%), particle size, and amount of carvedilol permeated/unit area in 24 h (Q 24) were the dependent variables. Regression analysis was performed to identify the optimum formulation conditions. The in vivo behavior was evaluated in rabbits comparing the bioavailability of carvedilol after intravenous, nasal, and oral administration. The results revealed high drug EE% ranging from 68 to 87.62%. Carvedilol-loaded SLNs showed a spherical shape with an enriched core drug loading pattern having a particle size in the range of 66 to 352 nm. The developed SLNs exhibited significant high amounts of carvedilol permeated through the nasal mucosa as confirmed by confocal laser scanning microscopy. The in vivo pharmacokinetic study revealed that the absolute bioavailability of the optimized intranasal SLNs (50.63%) was significantly higher than oral carvedilol formulation (24.11%). Hence, we conclude that our developed SLNs represent a promising carrier for the nasal delivery of carvedilol.  相似文献   

17.
The oral route has notable advantages to administering dosage forms. One of the most important questions to solve is the poor solubility of most drugs which produces low bioavailability and delivery problems, a major challenge for the pharmaceutical industry. Albendazole is a benzimidazole carbamate extensively used in oral chemotherapy against intestinal parasites, due to its extended spectrum activity and low cost. Nevertheless, the main disadvantage is the poor bioavailability due to its very low solubility in water. The main objective of this study was to prepare microcrystal formulations by the bottom-up technology to increase albendazole dissolution rate, in order to enhance its antiparasitic activity. Thus, 20 novel microstructures based on chitosan, cellulose derivatives, and poloxamer as a surfactant were produced and characterized by their physicochemical properties and in vitro biological activity. To determine the significance of type and concentration of polymer, and presence or absence of surfactant in the crystals, the variables area under the curve, albendazole microcrystal solubility, and drug released (%) at 30 min were analyzed with a three-way ANOVA. This analysis indicated that the microcrystals made with hydroxyethylcellulose or chitosan appear to be the best options to optimize oral absorption of the active pharmaceutical ingredient. The in vitro evaluation of anthelmintic activity on adult forms of Trichinella spiralis identified system S10A as the most effective, of choice for testing therapeutic efficacy in vivo.  相似文献   

18.
The purpose of the present study was to develop an optimal microemulsion (ME) formulation as topical nanocarrier of caffeine (CAF) to enhance CAF skin retention and subsequently improve its therapeutic effect on UVB-induced skin carcinogenesis. The pseudo-ternary phase diagram was developed composing of Labrafil M 1944 CS as oil phase, Cremophor EL as surfactant, tetraglycol as cosurfactant, and water. Four ME formulations at water content of 50, 60, 70, and 80% were prepared along the water dilution line of oil to surfactant ratio of 1:3 and characterized in terms of morphology, droplet size, and electric conductivity. A gel at the same drug loads (1%, w/w) was used as control. Ex vivo skin permeation studies were conducted for ME optimization. The optimized formulation (ME4) was composed of 5% (w/w) Labrafil M 1944 CS, 15% (w/w) Smix (2/1, Cremophor EL and tetraglycol), and 80% (w/w) aqueous phase. The skin location amount of CAF from ME4 was nearly 3-fold higher than control (P < 0.05) with improved permeated amount through the skin. The skin targeting localization of hydrophilic substance from ME4 was further visualized through fluorescent-labeled ME by a confocal laser scanning microscope. In pharmacodynamics studies, CAF-loaded ME4 was superior in terms of increasing apoptotic sunburn cells (P < 0.05) as compared with control. Overall results suggested that the ME4 might be a promising vehicle for the topical delivery of CAF.KEY WORDS: apoptosis, caffeine, CLSM study, hydrophilic drug, microemulsion, percutaneous delivery  相似文献   

19.
Lutein is widely used as diet supplement for prevention of age-related macular degeneration. However, the application and efficacy of lutein in food and nutritional products has been hampered due to its poor solubility and low oral bioavailability. This study aimed to develop and evaluate the formulation of oral fast-dissolving film (OFDF) containing lutein nanocrystals for enhanced bioavailability and compliance. Lutein nanocrystals were prepared by anti-solvent precipitation method and then encapsulated into the films by solvent casting method. The formulation of OFDF was optimized by Box-Behnken Design (BBD) as follows: HPMC 2.05% (w/v), PEG 400 1.03% (w/v), Cremophor EL 0.43% (w/v). The obtained films exhibited uniform thickness of 35.64 ± 1.64 μm and drug content of 0.230 ± 0.003 mg/cm2 and disintegrated rapidly in 29 ± 8 s. The nanocrystal-loaded films with reconstituted particle size of 377.9 nm showed better folding endurance and faster release rate in vitro than the conventional OFDFs with raw lutein. The microscope images, thermograms, and diffractograms indicated that lutein nanocrystals were highly dispersed into the films. After administrated to SD rats, t max was decreased from 3 h for oral solution formulation to less than 0.8 h for OFDF formulations, and C max increased from 150 ng/mL for solution to 350 ng/mL for conventional OFDF or 830 ng/mL for nanocrystal OFDF. The AUC 0-24h of conventional or nanocrystal OFDF was 1.37 or 2.08-fold higher than that of the oral solution, respectively. These results suggested that drug nanocrystal-loaded OFDF can be applied as a promising approach for enhanced bioavailability of poor soluble drugs like lutein.  相似文献   

20.
The focus on drug delivery for the pediatric population has been steadily increasing in the last decades. In terms of developing in vitro models simulating characteristics of the targeted pediatric population, with the purpose of predicting drug product performance after oral administration, it is important to simulate the gastro-intestinal conditions and processes the drug will encounter upon oral administration. When a drug is administered in the fed state, which is commonly the case for neonates, as they are typically fed every 3 h, the digestion of the milk will affect the composition of the fluid available for drug dissolution/solubilization. Therefore, in order to predict the solubilized amount of drug available for absorption, an in vitro model simulating digestion in the gastro-intestinal tract should be utilized. In order to simulate the digestion process and the drug solubilization taking place in vivo, the following aspects should be considered; physiologically relevant media, media volume, use of physiological enzymes in proper amounts, as well as correct pH and addition of relevant co-factors, e.g., bile salts and co-enzymes. Furthermore, physiological transit times and appropriate mixing should be considered and mimicked as close as possible. This paper presents a literature review on physiological factors relevant for digestion and drug solubilization in neonates. Based on the available literature data, a novel in vitro digestion model simulating digestion and drug solubilization in the neonate and young infant pediatric population (2 months old and younger) was designed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号