首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to evaluate the use of different types of microneedles and doses of ovalbumin antigen for in vitro skin permeation and in vivo immunization. In vitro skin permeation experiments and confocal laser scanning microscopy revealed that hollow microneedles had a superior enhancing effect on skin permeation compared with a solid microneedle patch and untreated skin by efficiently delivering ovalbumin-fluorescein conjugate into the deep skin layers. The flux and cumulative amount of ovalbumin-fluorescein conjugate at 8 h after administering with various conditions could be ranked as follows: hollow MN; high dose?>?medium dose?>?low dose?>?MN patch; high dose?>?medium dose?>?low dose?>?untreated skin; high dose?>?medium dose?>?low dose?>?without ovalbumin-fluorescein conjugate. As the dose of ovalbumin-fluorescein conjugate was increased to 500 μg, the antigen accumulated in the skin to a greater extent, as evidenced by the increasing green fluorescence intensity. When the hollow microneedle was used for the delivery of ovalbumin into the skin of mice, it was capable of inducing a stronger immunoglobulin G immune response than conventional subcutaneous injection at the same antigen dose. Immunoglobulin G levels in the hollow MN group were 5.7, 11.6, and 13.3 times higher than those of the subcutaneous injection group for low, medium, and high doses, respectively. Furthermore, the mice immunized using the hollow microneedle showed no signs of skin infection or pinpoint bleeding. The results suggest that the hollow MN is an efficient device for delivering the optimal dose of antigen via the skin for successful immunization.  相似文献   

2.
The purpose of this research was to develop microemulsions (ME) and microemulgels (MG) for enhancing transdermal delivery of Kaempferia parviflora (KP) extract. The methoxyflavones were used as markers. Various formulations of ME and MG containing 10% w/v KP extract were prepared, and the in vitro skin permeation and deposition were investigated. The potential ME system containing oleic acid (5% w/v), Tween 20 (20% w/v), PG (40% w/v), and water (35% w/v) was successfully formulated. ME with 10% w/v limonene (ME-L10%) showed higher methoxyflavones flux than ME-L5%, ME-L1%, ME without limonene, and KP extract in water, respectively. ME-L10% was selected for adding a gelling agent to form microemulgels (MG-L10%). However, the high viscosity of the gel formulation might control the diffusion of the compound from gel layer into the skin. Therefore, the liquid formulation provided potential ME droplets to deliver KP extract through the skin. Limonene also plays an effective role on the skin permeation, in which the histological image of the skin treated with ME-L10% exhibited larger space of each flattened keratinocyte layer in the stratum corneum compared to the skin treated with KP extract in water. Moreover, ME-L10% showed good stability. Therefore, ME-L10% was a potential formulation for improving transdermal delivery of KP extract.  相似文献   

3.
A revolutionary paradigm shift is being observed currently, towards the use of therapeutic biologics for disease management. The present research was focused on designing an efficient dosage form for transdermal delivery of α-choriogonadotropin (high molecular weight biologic), through biodegradable polymeric microneedles. Polyvinylpyrrolidone-based biodegradable microneedle arrays loaded with high molecular weight polypeptide, α-choriogonadotropin, were fabricated for its systemic delivery via transdermal route. Varied process and formulation parameters were optimized for fabricating microneedle array, which in turn was expected to temporally rupture the stratum corneum layer of the skin, acting as a major barrier to drug delivery through transdermal route. The developed polymeric microneedles were optimized on the basis of quality attributes like mechanical strength, axial strength, insertion ratio, and insertion force analysis. The optimized polymeric microneedle arrays were characterized for in vitro drug release studies, ex vivo drug permeation studies, skin resealing studies, and in vivo pharmacokinetic studies. Results depicted that fabricated polymeric microneedle arrays with mechanical strength of above 5 N and good insertion ratio exhibited similar systemic bioavailability of α-choriogonadotropin in comparison to marketed subcutaneous injection formulation of α-choriogonadotropin. Thus, it was ultimately concluded that the designed drug delivery system can serve as an efficient tool for systemic delivery of therapeutic biologics, with an added benefit of overcoming the limitations of parenteral delivery, achieving better patient acceptability and compliance.  相似文献   

4.
The aim of this investigation is to study the effect of donor concentration and microneedle (MN) length on permeation of insulin and further evaluating the data using scaling analyses and numerical simulations. Histological evaluation of skin sections was carried to evaluate the skin disruption and depth of penetration by MNs. Scaling analyses were done using dimensionless parameters like concentration of drug (C t/C s), thickness (h/L) and surface area of the skin (S a/L 2). Simulation studies were carried out using MATLAB and COMSOL software to simulate the insulin permeation using histological sections of MN-treated skin and experimental parameters like passive diffusion coefficient. A 1.6-fold increase in transdermal flux and 1.9-fold decrease in lag time values were observed with 1.5 mm MN when compared with passive studies. Good correlation (R 2?>?0.99) was observed between different parameters using scaling analyses. Also, the in vitro and simulated permeations profiles were found to be similar (f 2?≥?50). Insulin permeation significantly increased with increase in donor concentration and MN length (p?<?0.05). The developed scaling correlations and numerical simulations were found to be accurate and would help researchers to predict the permeation of insulin with new dimensions of MN in optimizing insulin delivery. Overall, it can be inferred that the application of MNs can significantly enhance insulin permeation and may be an efficient alternative for injectable insulin therapy in humans.  相似文献   

5.
The present study aims to develop the correlation between in vitro and in vivo skin permeation of lidocaine in its transdermal patch. In order to minimize the run-to-run variability during in vitro skin permeation studies, release normalized cumulative percent (%Ct n) was calculated. A suitable polynomial mathematical model was used to establish a correlation between time and %Ct n. Percent in vivo absorbed was calculated by using numerical deconvolution (NDC) and non-compartmental analysis (NCA) methods. Pharmacokinetic (PK) parameters such as AUC last and C max were predicted with the established in vitroin vivo correlation (IVIVC) models. The minimum prediction errors in NDC method for C max were found to be ?30.9 and ?25.4% for studies I (in vivo study in human volunteers with one batch of Lidoderm patch; internal validation) and II (in vivo study in human volunteers with another batch of Lidoderm patch; external validation), respectively, whereas minimum prediction errors in NCA method were relatively low (3.9 and 0.03% for studies I and II, respectively) compared to those in NDC method. The prediction errors for AUC last were found to be less than 2% for both methods and studies. The established method in this study could be a potential approach for predicting the bioavailability and/or bioequivalence for transdermal drug delivery systems.  相似文献   

6.
The objective of this study was to develop proliposomes and self-nanoemulsifying drug delivery system (SNEDDS) for a poorly bioavailable drug, valsartan, and to compare their in vivo pharmacokinetics. Proliposomes were prepared by thin-film hydration method using different lipids such as soy phosphatidylcholine (SPC), hydrogenated soy phosphatidylcholine (HSPC), distearyl phosphatidylcholine (DSPC), dimyristoylphosphatidylcholine (DMPC), and dimyristoyl phosphatidylglycerol sodium (DMPG) and cholesterol in various ratios. SNEDDS formulations were prepared using varying concentrations of capmul MCM, labrafil M 2125, and Tween 80. Both proliposomes and SNEDDS were evaluated for particle size, zeta potential, in vitro drug release, in vitro permeability, and in vivo pharmacokinetics. In vitro drug release was carried out in purified water and 0.1 N HCl using USP type II dissolution apparatus. In vitro drug permeation was studied using parallel artificial membrane permeation assay (PAMPA) and everted rat intestinal permeation techniques. Among the formulations, the proliposomes with drug/DMPG/cholesterol in the ratio of 1:1:0.5 and SNEDDS with capmul MCM (16.0% w/w), labrafil M 2125 (64.0% w/w), and Tween 80 (18.0% w/w) showed the desired particle size and zeta potential. Enhanced drug release was observed with proliposomes and SNEDDS as compared to pure valsartan. Valsartan permeability across PAMPA and everted rat intestinal permeation models was significantly higher with proliposomes and SNEDDS. Following single oral administration of proliposomes and SNEDDS, a relative bioavailability of 202.36 and 196.87%, respectively, was achieved compared to pure valsartan suspension. The study results indicated that both proliposomes and SNEDDS formulations are comparable in improving the oral bioavailability of valsartan.  相似文献   

7.
In order to regulate the skin permeation rate (flux) of escitalopram (ESP), ion-pair strategy was used in our work. Five organic acids with different physicochemical properties, benzoic acid (BA), ibuprofen (IB), salicylic acid (SA), benzenesulfonic acid (BSA), and p-aminobenzoic acid (PABA), were employed as counter-ions to regulate the permeation rate of ESP across the rabbit abdominal skin in vitro. The interaction between ESP and organic acids was characterized by FTIR and 13C NMR spectroscopy. Results showed that all organic acids investigated in this study performed a controlling effect on ESP flux. To further analyze the factors concerned with the permeation capability of ESP-acid complex, a multiple linear regression model was used. It is concluded that the steady-state flux (J) of ESP-acid complexes had a positive correlation with log K o/w (the n-octanol/water partition coefficient of ion-pair complex) and pK a (the acidity of organic acid counter-ion), but a negative correlation with MW (the molecular weight of ion-pair complex). The logK o/w of ion-pair complex is the primary one in all the factors that influence the skin permeation rate of ESP. The results demonstrated that organic acid with appropriate physicochemical properties can be considered as suitable candidate for the transdermal drug delivery of escitalopram.  相似文献   

8.
Delivering diclofenac diethylamine transdermally by means of a hydrogel is an approach to reduce or avoid systemic toxicity of the drug while providing local action for a prolonged period. In the present investigation, a process was developed to produce nanosize particles (about 10 nm) of diclofenac diethylamine in situ during the development of hydrogel, using simple mixing technique. Hydrogel was developed with polyvinyl alcohol (PVA) (5.8% w/w) and carbopol 71G (1.5% w/w). The formulations were evaluated on the basis of field emission scanning electron microscopy, texture analysis, and the assessment of various physiochemical properties. Viscosity (163–165 cps for hydrogel containing microsize drug particles and 171–173 cps for hydrogel containing nanosize drug particles, respectively) and swelling index (varied between 0.62 and 0.68) data favor the hydrogels for satisfactory topical applications. The measured hardness of the different hydrogels was uniform indicating a uniform spreadability. Data of in vitro skin (cadaver) permeation for 10 h showed that the enhancement ratios of the flux of the formulation containing nanosize drug (without the permeation enhancer) were 9.72 and 1.30 compared to the formulation containing microsized drug and the marketed formulations, respectively. In vivo plasma level of the drug increased predominantly for the hydrogel containing nanosize drug-clusters. The study depicts a simple technique for preparing hydrogel containing nanosize diclofenac diethylamine particles in situ, which can be commercially viable. The study also shows the advantage of the experimental transdermal hydrogel with nanosize drug particles over the hydrogel with microsize drug particles.  相似文献   

9.
Piroxicam is used in the treatment of rheumatoid arthritis, osteoarthritis, and other inflammatory diseases. Upon oral administration, it is reported to cause ulcerative colitis, gastrointestinal irritation, edema and peptic ulcer. Hence, an alternative delivery system has been designed in the form of transethosome. The present study describes the preparation, optimization, characterization, and ex vivo study of piroxicam-loaded transethosomal gel using the central composite design. On the basis of the prescreening study, the concentration of lipids and ethanol was kept in the range of 2–4% w/v and 0–40% v/v, respectively. Formulation was optimized by measuring drug retention in the skin, drug permeation, entrapment efficiency, and vesicle size. Optimized formulation was incorporated in hydrogel and compared with other analogous vesicular (liposomes, ethosomes, and transfersomes) gels for the aforementioned responses. Among the various lipids used, soya phosphatidylcholine (SPL 70) and ethanol in various percentages were found to affect drug retention in the skin, drug permeation, vesicle size, and entrapment efficiency. The optimized batch of transethosome has shown 392.730 μg cm?2 drug retention in the skin, 44.312 μg cm?2 h?1 drug permeation, 68.434% entrapment efficiency, and 655.369 nm vesicle size, respectively. It was observed that the developed transethosomes were found superior in all the responses as compared to other vesicular formulations with improved stability and highest elasticity. Similar observations were noted with its gel formulation.  相似文献   

10.
The present study was aimed to investigate the effect of salient microneedle (MN) geometry parameters like length, density, shape and type on transdermal permeation of rizatriptan (RIZ). Studies were carried out using two types of MN devices viz. AdminPatch® arrays (ADM) (0.6, 0.9, 1.2 and 1.5 mm lengths) and laboratory-fabricated polymeric MNs (PMs) of 0.6 mm length. In the case of the PMs, arrays were applied three times at different places within a 1.77-cm2 skin area (PM-3) to maintain the MN density closer to 0.6 mm ADM. Histological studies revealed that PM, owing to their geometry/design, formed wider and deeper microconduits when compared to ADM of similar length. Approximately 4.9- and 4.2-fold increases in the RIZ steady-state flux values were observed with 1.5 mm ADM and PM-3 applications when compared to the passive studies. A good correlation between different dimensionless parameters like the amount of RIZ permeated (C t /C s), thickness (h/L) and surface area (S a/L 2) of the skin was observed with scaling analyses. Numerical simulations provided further information regarding the distribution of RIZ in MN-treated skin after application of different MNs. Overall, the study suggests that MN application enhances the RIZ transdermal permeation and the geometrical parameters of MNs play an important role in the degree enhancement.  相似文献   

11.
The current study aimed to develop a prolonged-release pramipexole (PPX) transdermal patch for the treatment of Parkinson’s disease. Permeation parameters of PPX were investigated using human cadaver skin. Pramipexole patches were prepared using DURO-TAK® pressure-sensitive-adhesive (PSA) and evaluated for drug stability, drug loading, in vitro drug release, and in vitro permeation through mouse skin. The results indicated that blends of DURO-TAK® 87-2852 and DURO-TAK® 87-2510 were suitable for creating a prolonged-release PPX patch due to their advantages in drug release, drug loading, and stability. The final formulation consisted of 87-2852/87-2510 (70:30), 10% PG, and 15% PPX and showed a cumulative permeation amount of 1497.19?±?102.90 μg/cm2 with a continuous flux over 6.0 μg/(cm2·h) across human cadaver skin for 7 days. In vivo studies in rats indicated that PPX patch produced a significantly longer (p?<?0.001) half-life (t 1/2, 75.16?±?17.37 h) and mean residence time (MRT, 135.89?±?24.12 h) relative to oral tablets (Sifrol®) and had a relative bioavailability of 51.64?±?21.32%. Therefore, this study demonstrated the feasibility of developing a prolonged-release PPX patch, which proposed the potential to serve as an alternate to conventional oral tablets and may therefore improve patient compliance.  相似文献   

12.
Thermosensitive hydrogels are of great interest for in situ gelling drug delivery. The thermosensitive vehicle with a gelation temperature in a range of 30–36°C would be convenient to be injected as liquid and transform into gel after injection. To prepare novel hydrogels gelling near body temperature, the gelation temperature of poloxamer 407 (PX) were tailored by mixing PX with poly(acrylic acid) (PAA). The gelation behaviors of PX/PAA systems as well as the interaction mechanism were investigated by tube inversion, viscoelastic, shear viscosity, DSC, SEM, and FTIR studies. The gelation temperature of the plain PX solutions at high concentration of 18, 20, and 22% (w/w) gelled at temperature below 28°C, which is out of the suitable temperature range. Mixing PX with PAA to obtain 18 and 20% (w/w) PX with 1% (w/w) PAA increased the gelation temperature to the desired temperature range of 30–36°C. The intermolecular entanglements and hydrogen bonds between PX and PAA may be responsible for the modulation of the gelation features of PX. The mixtures behaved low viscosity liquid at room temperature with shear thinning behavior enabling their injectability and rapidly gelled at body temperature. The gel strength increased, while the pore size decreased with increasing PX concentration. Metronidazole, an antibiotic used for periodontitis, was incorporated into the matrices, and the drug did not hinder their gelling ability. The gels showed the sustained drug release characteristic. The thermosensitive PX/PAA hydrogel could be a promising injectable in situ gelling system for periodontal drug delivery.  相似文献   

13.
This study investigated the use of a newly developed chitosan-Ca pectinate microbead formulation for the colon-targeted delivery of anti-A/B toxin immunoglobulin of egg yolk (IgY) to inhibit toxin binding to colon mucosa cells. The effect of the three components (pectinate, calcium chloride, and chitosan) used for the microbead production was examined with the aim of identifying the optimal levels to improve drug encapsulation efficiency, swelling ratio, and cumulative IgY release rate. The optimized IgY-loaded bead component was pectin 5% (w/v), CaCl2 3% (w/v), and chitosan 0.5% (w/v). Formulated beads were spherical with 1.2-mm diameter, and the drug loading was 45%. An in vitro release study revealed that chitosan-Ca pectinate microbeads inhibited IgY release in the upper gastrointestinal tract and significantly improved the site-specific release of IgY in the colon. An in vivo rat study demonstrated that 72.6% of biologically active IgY was released specifically in the colon. These results demonstrated that anti-A/B toxin IgY-loaded chitosan-Ca pectinate oral microbeads improved IgY release behavior in vivo, which could be used as an effective oral delivery platform for the biological treatment of Clostridium difficile infection (CDI).  相似文献   

14.
The aim of this work was to study the potential of delivering clindamycin phosphate, as an efficient antibiotic drug, into a more absorbed, elastic ultradeformable form, transfersomes (TRSs). These vesicles showed an enhanced penetration through ex vivo permeation characters. TRSs were prepared using thin-film hydration method. Furthermore, they were evaluated for their entrapment efficiency, size, zeta potential, and morphology. Also, the prepared TRSs were converted into suitable gel formulation using carbopol 934 and were evaluated for their gel characteristics like pH, viscosity, spreadability, homogeneity, skin irritation, in vitro release, stability, and ex vivo permeation studies in rats. TRSs were efficiently formulated in a stable bilayer vesicle structure. Furthermore, clindamycin phosphate showed higher entrapment efficiency within the TRSs reaching about 93.3%?±?0.8 and has a uniform particle size. Moreover, the TRSs surface had a high negative charge which indicated the stability of the produced vesicles and resistance of aggregation. Clindamycin phosphate showed a significantly higher in vitro release (p?<?0.05; ANOVA/Tukey) compared with the control carbopol gel. Furthermore, the transfersomal gel showed a significantly higher (p?<?0.05; ANOVA/Tukey) cumulative amount of drug permeation and flux than both the transfersomal suspension and the control carbopol gel. In conclusion, the produced results suggest that TRS-loaded clindamycin are promising carriers for enhanced dermal delivery of clindamycin phosphate.  相似文献   

15.
The aim of this study was to design a novel felbinac (FEL) patch with significantly higher (P?<?0.05) skin permeation amount than the commercial product SELTOUCH® using ion-pair and chemical enhancer strategy, overcoming the disadvantage of the large application area of SELTOUCH®. Six complexes of FEL with organic amines diethylamine (DEA), triethylamine (TEA), N-(2′-hydroxy-ethanol)-piperdine (HEPP), monoethanolamine (MEtA), diethanolamine (DEtA), and triethanolamine (TEtA) were prepared by ion-pair interaction, and their formation were confirmed by differential scanning calorimetry (DSC), powder X-ray diffraction (pXRD), infared spectroscopy (IR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). Subsequently, the effect of ion-pair complexes and chemical enhancers were investigated through in vitro and in vivo experiments using rabbit abdominal skin. Results showed that FEL-TEA was the most potential candidate both in isopropyl palmitate (IPP) solution and transdermal patches. Combining use of 10% N-dodecylazepan-2-one (Azone), the optimized FEL-TEA patch achieved a flux of 18.29?±?2.59 μg/cm2/h, which was twice the amount of the product SELTOUCH® (J?=?9.18?±?1.26 μg/cm2/h). Similarly, the area under the concentration curve from time 0 to time t (AUC0-t ) in FEL-TEA patch group (15.94?±?3.58 h.μg/mL) was also twice as that in SELTOUCH® group (7.31?±?1.16 h.μg/mL). Furthermore, the in vitro skin permeation results of FEL-TEA patch was found to have a good correlation with the in vivo absorption results in rabbit. These findings indicated that a combination of ion-pair and chemical enhancer strategy could be useful in developing a novel transdermal patch of FEL.  相似文献   

16.
Fast-dissolving delivery systems (FDDS) have received increasing attention in the last years. Oral drug delivery is still the preferred route for the administration of pharmaceutical ingredients. Nevertheless, some patients, e.g. children or elderly people, have difficulties in swallowing solid tablets. In this work, gelatin membranes were produced by electrospinning, containing an encapsulated therapeutic deep-eutectic solvent (THEDES) composed by choline chloride/mandelic acid, in a 1:2 molar ratio. A gelatin solution (30% w/v) with 2% (v/v) of THEDES was used to produce electrospun fibers and the experimental parameters were optimized. Due to the high surface area of polymer fibers, this type of construct has wide applicability. With no cytotoxicity effect, and showing a fast-dissolving release profile in PBS, the gelatin fibers with encapsulated THEDES seem to have promising applications in the development of new drug delivery systems.  相似文献   

17.
Dissolving microneedles (MNs) offered a simple, minimally invasive method for meloxicam (MX) delivery to the skin. However, the fabrication of dissolving MNs still faced some challenges, such as significant time consumption, loss of drug activity, and difficulty in regulating MN drug loading. To address these issues, we developed the tip-dissolving (TD) MNs. Several kinds of drugs were encapsulated successfully, and the quantity of MX ranged from 37.23?±?8.40 to 332.53?±?13.37 μg was precisely controlled. The effects of fabrication process on biomacromolecules stability were studied, and it was found that tyrosinase kept 90.4% activity during the fabrication process. The whole process for the fabrication of MNs only takes approximately 1 h. In order to further evaluate the potential of the TD MNs, MX TD MNs were prepared for in vitro release experiments, in vivo release experiments, safety evaluation, pharmacokinetic studies, and pharmacodynamic studies. The results demonstrated that MX TD MNs offered several advantages, including rapid release of the encapsulated drug (91.72% within 30 min), efficient drug delivery to skin (79.18%), no obvious skin irritation, decent relative bioavailability (122.3%), and strong anti-inflammatory and analgesic effects. Based on these results, we envisage that the TD MNs have promising potential for transdermal drug delivery of MX.  相似文献   

18.
Effective and compound-sparing methods to evaluate promising drug delivery systems are a prerequisite for successful selection of formulations in early development stages. The aim of the study was to develop a small-scale in situ method to determine drug release and supersaturation in highly concentrated suspensions of enabling formulations. Mesoporous magnesium carbonate (MMC), which delivers the drug in an amorphous form, was selected as a drug carrier. Five model compounds were loaded into the MMC at a 1:10 ratio using a solvent evaporation technique. The μDiss Profiler was used to study the drug release from MMC in fasted-state simulated intestinal fluid. To avoid extensive light scattering previously seen in particle-rich suspensions in the μDiss Profiler, an in-house-designed protective nylon filter was placed on the in situ UV probes. Three types of release experiments were conducted for each compound: micronized crystalline drug with MMC present, drug-loaded MMC, and drug-loaded MMC with 0.01% w/w hydroxypropyl methyl cellulose. The nylon filters effectively diminished interference with the UV absorption; however, the release profiles obtained were heavily compound dependent. For one of the compounds, changes in the UV spectra were detected during the release from the MMC, and these were consistent with degradation of the compound. To conclude, the addition of protective nylon filters to the probes of the μDiss Profiler is a useful contribution to the method, making evaluations of particle-rich suspensions feasible. The method is a valuable addition to the current ones, allowing for fast and effective evaluation of advanced drug delivery systems.  相似文献   

19.
The objective of this study was to prepare and evaluate terbutaline sulphate (TBS) bi-layer tablets for once-daily administration. The bi-layer tablets consisted of an immediate-release layer and a sustained-release layer containing 5 and 10 mg TBS, respectively. The sustained-release layer was developed by using Compritol®888 ATO, Precirol® ATO 5, stearic acid, and tristearin, separately, as slowly eroding lipid matrices. A full 4?×?22 factorial design was employed for optimization of the sustained-release layer and to explore the effect of lipid type (X 1), drug–lipid ratio (X 2), and filler type (X 3) on the percentage drug released at 8, 12, and 24 h (Y 1, Y 2, and Y 3) as dependent variables. Sixteen TBS sustained-release matrices (F1–F16) were prepared by melt solid dispersion method. None of the prepared matrices achieved the targeted release profile. However, F2 that showed a relatively promising drug release was subjected to trial and error optimization for the filler composition to develop two optimized matrices (F17 and F18). F18 which consisted of drug–Compritol®888 ATO at ratio (1:6 w/w) and Avicel PH 101/dibasic calcium phosphate mixture of 2:1 (w/w) was selected as sustained-release layer. TBS bi-layer tablets were evaluated for their physical properties, in vitro drug release, effect of storage on drug content, and in vivo performance in rabbits. The bi-layer tablets showed acceptable physical properties and release characteristics. In vivo absorption in rabbits revealed initial high TBS plasma levels followed by sustained levels over 24 h compared to immediate-release tablets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号