首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erianthus arundinaceus, a member of the Saccharum complex, is of interest as a potential resource for sugarcane improvement and as a bioenergy crop. Genetic analyses of germplasm collections of E. arundinaceus are being used increasingly. To expand the genomic resources in E. arundinaceus, we aimed at developing simple sequence repeat markers. Using pyrosequencing on the 454 GS FLX system, we sequenced genomic DNA from “JW630” collected in Japan. A total of 1682 candidate loci were used to design the primers, and 1234 primer pairs amplified fragments of the expected size in the primer screening with three wild E. arundinaceus accessions (JW630, “JW4,” and “IJ76-349”). The efficiency of genotyping was validated with a subset of 174 primer pairs and 8 E. arundinaceus accessions. Of these primer pairs, 171 amplified fragments in all accessions tested and 162 detected polymorphic loci. The average values of genetic parameters were estimated as 0.30 (range, 0.09–0.49) for polymorphic information content, 1.65 (0.00–5.87) for marker index, and 2.78 (0.00–8.75) for resolving power. Using these parameters, we selected 61 primer pairs with large discriminatory power for the analyzed loci. Of the 174 primer pairs, 45 (25.9%) were also applicable to Saccharum and 33 (19.0%) to Miscanthus species. These markers would provide a valuable tool for estimating genetic diversity and constructing linkage maps in E. arundinaceus, which would be useful for genetic study and breeding.  相似文献   

2.
Nowadays, the modern pharmaceutical investigations are directed toward obtaining of new polymer micro- and nano-sized drug delivery carriers. In this respect, the use of hydrogel carriers based on polyzwitterions (PZIs) is an opportunity in the preparation of polymer drug delivery systems with desired characteristics. This paper describes the synthesis and characterization of micro-structured p(VA-co-DMAPS) systems with different compositions in situ loaded with Ibuprofen by emulsifier-free emulsion copolymerization (EEC) in water. The mean size of the prepared microparticles was measured by SEM and particles have been visualized by AFM. The inclusion of Ibuprofen in the polyzwitterionic copolymer microgel systems was established by using DSC. In vitro drug release experiments were carried out in order to estimate the ability of the obtained microgels to modify the release of water-insoluble Ibuprofen.  相似文献   

3.
The objective of this work was the preparation of osmotic tablets using polymer blends of cellulose acetate butyrate (CAB) or ethylcellulose with ammonio methacrylate copolymer (Eudragit® RL). The advantage of these coatings in comparison to the traditionally used cellulose acetate is their solubility in safer organic solvents like ethanol. Polymer films were characterized with respect to their water uptake, dry mass loss, and mechanical properties. The effect of the polymer blend ratio on drug release and on the rupture force of the coating was investigated. In addition, the effect of drug solubility and content, pH and agitation rate of the release medium, and coating level and plasticizer content on the release were studied. With increased Eudragit® RL content in the coating blends, higher medium uptake of the film was observed, resulting in shorter lag times and faster drug release from the osmotic tablets. Replacing ethylcellulose with cellulose acetate butyrate as a coating material led to shorter lag times and faster drug release due to increased film permeability. In addition, CAB-based films had a higher strength and flexibility. The drug release was osmotically controlled and decreased with increasing coating level. It increased with increased drug solubility, plasticizer content, change of buffer species (acetate > phosphate), and decreased coating level. Agitation rate and drug content had no effect on the drug release. A 20% w/w coating level was sufficient for the tablet to tolerate forces of more than five times of the gastric destructive force reported in literature.  相似文献   

4.
Macrolide antibiotics are lipophilic drugs with some limitations including low solubility, limited cellular permeation, patients discomfort, etc. With amphiphilic methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) (MPEG-PCL) copolymer and azithromycin (AZT) as drug carrier and model drug, AZT-loaded micelles were prepared via thin-membrane hydration method in order to overcome these limitations. Encapsulation efficiency of AZT-loaded micelles was 94.40% with good storage stability for 28 days, and AZT’s water solubility was enhanced to 944 μg/mL. Fourier transform infrared spectrum and x-ray diffraction analysis indicated that AZT was enveloped into the micelles in amorphous form due to its interaction with the copolymer. AZT’s in vitro release from the AZT-loaded micelles demonstrated a slow and continuous behavior when compared with raw AZT. The release dynamics was accorded with Weibull equation, meaning that release amount of AZT lowered with time and was proportional to remaining amount of drug in the AZT-loaded micelles. Korsmeyer-Peppas fitting result suggested that drug release process was a classical Fickian diffusion-controlled manner. With Staphylococcus aureus as bacterial strain, antibacterial activity of the AZT-loaded micelles displayed was comparable with raw AZT. In conclusion, MPEG-PCL should be a promising carrier for macrolide antibiotic delivery in treatment of bacterial infections.  相似文献   

5.
Poor drug solubility and dissolution rate remain to be one of the major problems facing pharmaceutical scientists, with approximately 40% of drugs in the industry categorised as practically insoluble or poorly water soluble. This in turn can lead to serious delivery challenges and poor bioavailability. The aim of this research was to investigate the effects of the surfactants, poloxamer 407 (P407) and caprol® PGE 860 (CAP), at various concentrations (0.1, 0.5, 1 and 3% w/v) on the enhancement of the dissolution properties of poorly water-soluble drug, naproxen, using in situ micronisation by solvent change method and freeze-drying. The extent at which freeze-drying influences the dissolution rate of naproxen microcrystals is investigated in this study by comparison with desiccant-drying. All formulations were evaluated and characterised using particle size analysis and morphology, in vitro dissolution studies, differential scanning calorimetry (DSC), and Fourier transform infra-red (FT-IR) spectroscopy. An increase in poloxamer 407 concentration in freeze-dried formulations led to enhancement of drug dissolution compared to desiccator-dried formulations, naproxen/caprol® PGE 860 formulations and untreated drug. DSC and FT-IR results show no significant chemical interactions between drug and poloxamer 407, with only very small changes to drug crystallinity. On the other hand, caprol® PGE 860 showed some interactions with drug components, alterations to the crystal lattice of naproxen, and poor dissolution profiles using both drying methods, making it a poor choice of excipient.  相似文献   

6.
A revolutionary paradigm shift is being observed currently, towards the use of therapeutic biologics for disease management. The present research was focused on designing an efficient dosage form for transdermal delivery of α-choriogonadotropin (high molecular weight biologic), through biodegradable polymeric microneedles. Polyvinylpyrrolidone-based biodegradable microneedle arrays loaded with high molecular weight polypeptide, α-choriogonadotropin, were fabricated for its systemic delivery via transdermal route. Varied process and formulation parameters were optimized for fabricating microneedle array, which in turn was expected to temporally rupture the stratum corneum layer of the skin, acting as a major barrier to drug delivery through transdermal route. The developed polymeric microneedles were optimized on the basis of quality attributes like mechanical strength, axial strength, insertion ratio, and insertion force analysis. The optimized polymeric microneedle arrays were characterized for in vitro drug release studies, ex vivo drug permeation studies, skin resealing studies, and in vivo pharmacokinetic studies. Results depicted that fabricated polymeric microneedle arrays with mechanical strength of above 5 N and good insertion ratio exhibited similar systemic bioavailability of α-choriogonadotropin in comparison to marketed subcutaneous injection formulation of α-choriogonadotropin. Thus, it was ultimately concluded that the designed drug delivery system can serve as an efficient tool for systemic delivery of therapeutic biologics, with an added benefit of overcoming the limitations of parenteral delivery, achieving better patient acceptability and compliance.  相似文献   

7.
3D printing evolved as a promising technique to improve individualization of drug therapy. In particular, when printing sustained release solid dosage forms, as for instance implants, inserts, and also tablets, estimation of the drug release profile in vivo is necessary. In most cases, corresponding analyses cannot be performed at hospital or community pharmacies. Therefore, the present study aimed to develop a sustained release drug delivery system produced via 3D printing, which allows dose adaption and estimation of drug release at the same time. Filaments as feedstock for the printer were produced via hot-melt extrusion and consisted of Eudragit® RL as sustained release polymer, 30% theophylline as model active pharmaceutical ingredient, and stearic acid as solid plasticizer. Assuming that the surface/mass ratio was constant, network structures of different densities were printed as novel solid dosage form. Their weight (263 to 668 mg), thereby their dose, and surface area, determined using X-ray microcomputed tomography, showed a linear correlation with the fill density. The specific surface area of the network hardly varied with changing fill density. Dissolution studies showed a slower drug release for dosage forms with a denser network. Higuchi’s model was used for prediction of drug release and showed limited applicability due to different release kinetics for different fill densities. However, using linear interpolation for the prediction resulted in good RMSEP values between 1.4 and 3.7%. These findings might be useful to enable customized production of sustained release solid dosage forms via 3D printing in hospital and community pharmacies in the future.  相似文献   

8.
Optimization of a lyophilized fast-disintegrating tablet (LFDT) formulation containing naratriptan hydrochloride, an antimigraine drug, was the foremost objective of the study, aiming in achieving fast headache pain relief. The Design-Expert® v10 software was used to generate formulations using D-optimal mixture design with four components: gelatin (X1), hydrolyzed gelatin (X2), glycine (X3), and mannitol (X4) of total solid material (TSM) w/w. The effect of the relative proportion of each component was determined on friability (Y1), hardness (Y2), and in vitro disintegration time (Y3), which was then applied for formulation optimization. In addition, their effect on tablet porosity was determined via scanning electron microscopy (SEM). Drug-excipient interaction was evaluated using differential scanning calorimetry (DSC). A comparative dissolution study against the conventional tablets was studied. Accelerated stability study was carried out in (Al/Al) and (Al/PVC) blister packs. An in vivo pharmacokinetic study was carried out to compare the optimized formulation and the conventional tablets. The optimized formulation’s responses were 0.30%, 3.4 kg, and 6.12 s for Y1, Y2, and Y3, respectively. No drug-excipient interaction was specified via DSC. The optimized formulation exhibited porous structure as determined via SEM. Dissolution study demonstrated complete dissolution within 1.5 min. Study indicated stability for 78 months in (Al/Al) blister packs. In vivo pharmacokinetic study demonstrated that Cmax, AUClast, and AUCinf were significantly higher for the developed formulation. As well, the Tmax was 1 h earlier than that of convenient tablet. An LFDT would achieve a faster onset of action for naratriptan compared to other formulations.  相似文献   

9.
This study focused on the development of flexible (i.e., deformable) multiple-unit pellets that feature (i) a prolonged drug release, (ii) drug abuse deterrence, and (iii) a minimal risk of alcohol-induced dose dumping (ADD). Deformable pellets were prepared via an advanced continuous one-step hot-melt extrusion (HME) technique, with the drug (i.e., antipyrine and codeine phosphate) fed as an aqueous solution into the molten matrix material (i.e., cornstarch, gum arabic, and xanthan). Formulations that had suitable mechanical characteristics (i.e., high compression strength) were coated with a flexible Aquacoat® ARC film to ensure prolonged release and to avoid ADD. The pellets were characterized in terms of their mechanical properties and in vitro drug release behavior in alcoholic media. All formulations were abuse deterrent: they had a high compression strength and grinding the pellets into powder was impossible. Since the pellets comprising gum arabic and xanthan as a matrix did not remain intact during dissolution testing, they had a very fast drug release rate. Cornstarch-based pellets that swelled but remained intact in the dissolution media had a slower drug release. Coated cornstarch-based pellets had a prolonged release over 8 h and resistance to dose dumping in 20 and 40% ethanol. Our results indicate that cornstarch-based pellets manufactured via the advanced HME process followed by coating are a promising formulation that makes tampering difficult due to a high compression strength combined with robustness in alcoholic media.  相似文献   

10.
Fluticasone propionate is a synthetic corticosteroid drug distinguished by its potent anti-inflammatory action with low systemic side effects in comparison to other corticosteroids making it a potential drug for local buccal delivery. The aim of the present study was to design mucoadhesive buccal film containing fluticasone that is aesthetically acceptable and could maintain local drug release for a sustained period to manage the sign and symptoms of severe erosive mouth lesions. Solvent casting technique was used in film preparation. Different polymeric blends were used either alone or in combination with mucoadhesive polymers, sodium carboxymethyl cellulose (SCMC), or Carbopol 971P at different concentrations. The physicochemical properties, in vitro mucoadhesion time as well as the drug release properties for all prepared formulations were determined. Selected formulations with adequate properties were further examined by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) and subjected to in vivo evaluation. Films containing hydroxypropyl methylcellulose (HPMC)/ethyl cellulose (EC) showed acceptable physicochemical properties, homogenous drug distribution, convenient mucoadhesion time, moderate swelling as well as sustained drug release up to 12 h. The biological performance of these formulations was assessed on healthy human volunteers and compared with a prepared mouthwash which showed enhanced pharmacokinetic parameters for the selected films in comparison to the mouthwash. The results revealed that the optimized formulation containing HPMC/EC and 10% SCMC could successfully achieve sustained drug release for 10 h which is considered promising for local treatment of severe mouth lesions.  相似文献   

11.
The aim of this article was to construct a T–ϕ phase diagram for a model drug (FD) and amorphous polymer (Eudragit® EPO) and to use this information to understand the impact of how temperature–composition coordinates influenced the final properties of the extrudate. Defining process boundaries and understanding drug solubility in polymeric carriers is of utmost importance and will help in the successful manufacture of new delivery platforms for BCS class II drugs. Physically mixed felodipine (FD)–Eudragit® EPO (EPO) binary mixtures with pre-determined weight fractions were analysed using DSC to measure the endset of melting and glass transition temperature. Extrudates of 10 wt% FD–EPO were processed using temperatures (110°C, 126°C, 140°C and 150°C) selected from the temperature–composition (T–ϕ) phase diagrams and processing screw speed of 20, 100 and 200rpm. Extrudates were characterised using powder X-ray diffraction (PXRD), optical, polarised light and Raman microscopy. To ensure formation of a binary amorphous drug dispersion (ADD) at a specific composition, HME processing temperatures should at least be equal to, or exceed, the corresponding temperature value on the liquid–solid curve in a F–H T–ϕ phase diagram. If extruded between the spinodal and liquid–solid curve, the lack of thermodynamic forces to attain complete drug amorphisation may be compensated for through the use of an increased screw speed. Constructing F–H T–ϕ phase diagrams are valuable not only in the understanding drug–polymer miscibility behaviour but also in rationalising the selection of important processing parameters for HME to ensure miscibility of drug and polymer.KEY WORDS: DSC, Flory–Huggins theory, hot-melt extrusion, thermal processing  相似文献   

12.
Poly(3-hydroxybutyrate) (PHB) biodegradable polymeric membranes were evaluated as platform for progesterone (Prg)-controlled release. In the design of new drug delivery systems, it is important to understand the mass transport mechanism involved, as well as predict the process kinetics. Drug release experiments were conducted and the experimental results were evaluated using engineering approaches that were extrapolated to the pharmaceutical field by our research group. Membranes were loaded with different Prg concentrations and characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). SEM images showed that membranes have a dense structure before and after the progesterone addition. DSC and FTIR allowed determining the influence of the therapeutic agent in the membrane properties. The in vitro experiments were performed using two different techniques: (A) returning the sample to the receptor solution (constant volume of the delivery medium) and (B) extracting total volume of the receptor solution. In this work, we present a simple and accurate “lumped” second-order kinetic model. This lumped model considers the different mass transport steps involved in drug release systems. The model fits very well the experimental data using any of the two experimental procedures, in the range 0?≤?t?≤?∞ or 0?≤?M t ?≤?M . The drug release analysis using our proposed approaches is relevant for establishing in vitroin vivo correlations in future tests in animals.  相似文献   

13.
The current study aimed to develop a prolonged-release pramipexole (PPX) transdermal patch for the treatment of Parkinson’s disease. Permeation parameters of PPX were investigated using human cadaver skin. Pramipexole patches were prepared using DURO-TAK® pressure-sensitive-adhesive (PSA) and evaluated for drug stability, drug loading, in vitro drug release, and in vitro permeation through mouse skin. The results indicated that blends of DURO-TAK® 87-2852 and DURO-TAK® 87-2510 were suitable for creating a prolonged-release PPX patch due to their advantages in drug release, drug loading, and stability. The final formulation consisted of 87-2852/87-2510 (70:30), 10% PG, and 15% PPX and showed a cumulative permeation amount of 1497.19?±?102.90 μg/cm2 with a continuous flux over 6.0 μg/(cm2·h) across human cadaver skin for 7 days. In vivo studies in rats indicated that PPX patch produced a significantly longer (p?<?0.001) half-life (t 1/2, 75.16?±?17.37 h) and mean residence time (MRT, 135.89?±?24.12 h) relative to oral tablets (Sifrol®) and had a relative bioavailability of 51.64?±?21.32%. Therefore, this study demonstrated the feasibility of developing a prolonged-release PPX patch, which proposed the potential to serve as an alternate to conventional oral tablets and may therefore improve patient compliance.  相似文献   

14.
Paliperidone (PPD) is the most recent second-generation atypical antipsychotic approved for the treatment of schizophrenia. An immediate release dose causes extrapyramidal side effects. In this work, a novel nanolipomer carrier system for PPD with enhanced intestinal permeability and sustained release properties has been developed and optimized. PPD was successfully encapsulated into a lipomer consisting of a specific combination of biocompatible materials including poly-ε-caprolactone as a polymeric core, Lipoid S75, and Gelucire® 50/13 as a lipid shell and polyvinyl alcohol as a stabilizing agent. The lipomer system was characterized by dynamic light scattering, TEM, DSC, and FTIR. An optimized lipomer formulation possessed a particle size of 168 nm, PDI of 0.2, zeta potential of ?23 mV and an encapsulation efficiency of 87.27%?±?0.098. Stability in simulated gastrointestinal fluids investigated in terms of particle size, zeta potential, and encapsulation efficiency measurements ensured the integrity of the nanoparticles upon oral administration. PPD-loaded nanolipomers demonstrated a superior sustained release behavior up to 24 h and better ex vivo intestinal permeation for PPD compared to the corresponding polymeric and solid lipid nanoparticles and drug suspension. The in vitro hemocompatibility test on red blood cells revealed no hemolytic effect of PPD-loaded lipomers which reflects its safety. The elaborated nanohybrid carrier system represents a promising candidate for enhancing the absorption of PPD providing a 2.6-fold increase in the intestinal permeation flux compared to the drug suspension while maintaining a sustained release behavior. It is a convenient alternative to the commercially available dosage form of PPD.  相似文献   

15.
This study aimed to develop a mucoadhesive polymeric excipient comprising curcumin for buccal delivery. Curcumin encompasses broad range of benefits such as antioxidant, anti-inflammatory, and chemotherapeutic activity. Hyaluronic acid (HA) as polymeric excipient was modified by immobilization of thiol bearing ligands. L-Cysteine (SH) ethyl ester was covalently attached via amide bond formation between cysteine and the carboxylic moiety of hyaluronic acid. Succeeded synthesis was proved by H-NMR and IR spectra. The obtained thiolated polymer hyaluronic acid ethyl ester (HA-SH) was evaluated in terms of stability, safety, mucoadhesiveness, drug release, and permeation-enhancing properties. HA-SH showed 2.75-fold higher swelling capacity over time in comparison to unmodified polymer. Furthermore, mucoadhesion increased 3.4-fold in case of HA-SH and drug release was increased 1.6-fold versus HA control, respectively. Curcumin-loaded HA-SH exhibits a 4.4-fold higher permeation compared with respective HA. Taking these outcomes in consideration, novel curcumin-loaded excipient, namely thiolated hyaluronic acid ethyl ester appears as promising tool for pharyngeal diseases.  相似文献   

16.
Microalgae are microorganisms often surrounded by a slime layer made of secreted polymeric substances sometimes including polysaccharides. These polysaccharides, weakly described in the literature, can constitute value-added molecules in several industrial areas. The aim of this article is to show that a new tool, the BioFilm Ring Test ®, can be used to detect viscous microalgal exopolymers. Two red microalgal strains (Rhodella violacea and Porphyridium purpureum), one cyanobacterium (Arthrospira platensis) and their excreted polymeric fractions were studied. R. violacea and P. purpureum induced a positive response with the BioFilm Ring Test ® contrary to A. platensis. Finally, the understanding of the fractions viscosity involvement in the BRT response was performed by a rheological study.  相似文献   

17.
The aim of this study was to apply quality by design (QbD) for pharmaceutical development of felodipine solid mixture (FSM) containing hydrophilic carriers and/or polymeric surfactants, for easier development of controlled-release tablets of felodipine. The material attributes, the process parameters (CPP), and the critical quality attributes of the FSMs were identified. Box–Behnken experimental design was applied to develop space design and determine the control space of FSMs that have maximum solubility, maximum dissolution, and ability to inhibit felodipine crystallization from supersaturated solution. Material attributes and CPP studied were the amount of hydroxypropyl methylcellulose (HPMC; X 1), amount of polymeric surfactants Inutec®SP1 (X 2), amount of Pluronic®F-127 (X 3) and preparation techniques, physical mixture (PM) or solvent evaporation (SE; X 4). There is no proposed design space formed if the Pluronic® content was below 45.1 mg and if PM is used as the preparation technique. The operating ranges, for robust development of FSM of desired quality, of Pluronic®, Inutec®SP1, HPMC, and preparation technique, are 49–50, 16–23, 83–100 mg, and SE, respectively. The calculated value of f2 was 56.85, indicating that the release profile of the controlled-release (CR) tablet (CR-6) containing the optimized in situ-formed FSM was similar to that of the target release profile. Not only did the ternary mixture of Pluronic®, HPMC with Inutec®SP1 enhance the dissolution rate and inhibit crystallization of felodipine, but also they aided Carbopol®974 in controlling felodipine release from the tablet matrix. It could be concluded that a promising once-daily CR tablets of felodipine was successfully designed using QbD approach.  相似文献   

18.
Treatment regimens for cancer patients using single chemotherapeutic agents often lead to undesirable toxicity, drug resistance, reduced uptake etc. Combination of two or more drugs is therefore becoming an imperative strategy to overcome these limitations. A step forward can be taken through delivery of the drugs used in combination via nanoparticles. Co-administration of chemotherapeutic drugs encapsulated in nanoparticles has been shown to result in synergistic effects and enhanced therapeutic efficacy. In present study, we explored the combination treatment of histone deacetylase inhibitor vorinostat (VOR) and topoisomerase II inhibitor etoposide (ETOP). The concurrent combination treatment of VOR and ETOP resulted in synergistic effect on human cervical HeLa cancer cells. VOR and ETOP were encapsulated into poly(ethylene glycol) monomethacrylate (POEOMA)-based disulfide cross-linked nanogels. The nanogels were synthesized using atom transfer radical polymerization (ATRP) via cyclohexane/water inverse mini-emulsion and were degradable in presence of intracellular glutathione (GSH) concentration. Both the drugs were loaded into the nanogels by physical encapsulation method and characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and differential scanning calorimetry (DSC). Both VOR- and ETOP-loaded nanogels showed sustained release profile. Furthermore, combination treatment drugs encapsulated of POEOMA nanogel demonstrated enhanced synergistic cytotoxic effect compared with combination of free drugs. Enhanced synergistic cell killing efficiency of drug-loaded POEOMA nanogels was due to increased apoptosis via caspase 3/7 activation. Therefore, combination of VOR- and ETOP-loaded PEG-based biodegradable nanogels may provide a promising therapy with enhanced anticancer effect.  相似文献   

19.
The aim of this study was to evaluate a novel combination of Soluplus® and hypromellose acetate succinate (HPMCAS-HF) polymers for solubility enhancement as well as enhanced physicochemical stability of the produced amorphous solid dispersions. This was accomplished by converting the poorly water-soluble crystalline form of carbamazepine into a more soluble amorphous form within the polymeric blends. Carbamazepine (CBZ), a Biopharmaceutics Classification System class II active pharmaceutical ingredient (API) with multiple polymorphs, was utilized as a model drug. Hot-melt extrusion (HME) processing was used to prepare solid dispersions utilizing blends of polymers. Drug loading showed a significant effect on the dissolution rate of CBZ in all of the tested ratios of Soluplus® and HPMCAS-HF. CBZ was completely miscible in the polymeric blends of Soluplus® and HPMCAS-HF up to 40% drug loading. The extrudates were characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and dissolution studies. DSC and XRD data confirmed the formation of amorphous solid dispersions of CBZ in the polymeric blends of Soluplus® and HPMCAS-HF. Drug loading and release of CBZ was increased with Soluplus® (when used as the primary matrix polymer) when formulations contained Soluplus® with 7–21% (w/w) HPMCAS-HF. In addition, this blend of polymers was found to be physically and chemically stable at 40°C, 75% RH over 12 months without any dissolution rate changes.KEY WORDS: carbamazepine, hot-melt extrusion, HPMCAS-HF, Soluplus®, stability  相似文献   

20.
Quetiapine fumarate (QF), an anti-schizophrenic drug, suffers from rapid elimination and poor bioavailability due to extensive first-pass effect. Intramuscularly (IM) injected lipospheres were designed to enhance the drug’s bioavailability and extend its release. A central composite design was applied to optimize the liposphere preparation by a melt dispersion technique using Compritol® 888 ATO or glyceryl tristearate as lipid component and polyvinyl alcohol as surfactant. Lipospheres were evaluated for their particle size, entrapment efficiency, and in vitro release. The optimized QF lipospheres were prepared using a Compritol® 888 ATO fraction of 18.88% in the drug/lipid mixture under a stirring rate of 3979 rpm. The optimized lipospheres were loaded into a thermoresponsive in situ forming gel (TRIFG) and a liquid crystalline in situ forming gel (LCIFG) to prevent in vivo degradation by lipases. The loaded gels were re-evaluated for their in vitro release and injectability. Bioavailability of QF from liposphere suspension and bio-shielding in situ gels loaded with QF lipospheres were assessed in rabbits compared to drug suspension. Results revealed that the AUC0–72 obtained from the liposphere-loaded TRIFG was ~3-fold higher than that obtained from the aqueous drug suspension indicating the bio-shielding effect of Poloxamer® 407 gel to inhibit the biodegradation of the lipospheres prolonging the residence of the drug in the muscle for higher absorption. Our results propose that bio-shielding in situ Poloxamer® 407 gels loaded with lipospheres is promising for the development of IM depot injection of drugs having extensive first-pass metabolism and rapid elimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号