首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The buccal mucosa appears as a promissory route for biologic drug administration, and pharmaceutical films are flexible dosage forms that can be used in the buccal mucosa as drug delivery systems for either a local or systemic effect. Recently, thin films have been used as printing substrates to manufacture these dosage forms by inkjet printing. As such, it is necessary to investigate the effects of printing biologics on films as substrates in terms of their physical and mucoadhesive properties. Here, we explored solvent casting as a conventional method with two biocompatible polymers, hydroxypropyl methylcellulose, and chitosan, and we used electrospinning process as an electrospun film fabrication of polycaprolactone fibers due to its potential to elicit mucoadhesion. Lysozyme was used as biologic drug model and was formulated as a solution for printing by thermal inkjet printing. Films were characterized before and after printing by mechanical and mucoadhesive properties, surface, and ultrastructure morphology through scanning electron microscopy and solid state properties by thermal analysis. Although minor differences were detected in micrographs and thermograms in all polymeric films tested, neither mechanical nor mucoadhesive properties were affected by these differences. Thus, biologic drug printing on films was successful without affecting their mechanical or mucoadhesive properties. These results open way to explore biologics loading on buccal films by inkjet printing, and future efforts will include further in vitro and in vivo evaluations.  相似文献   

2.
The purpose of this study was to develop and optimize formulations of mucoadhesive bilayered buccal patches of sumatriptan succinate using chitosan as the base matrix. The patches were prepared by the solvent casting method. Gelatin and polyvinyl pyrrolidone (PVP) K30 were incorporated into the patches, to improve the film properties of the patches. The patches were found to be smooth in appearance, uniform in thickness, weight, and drug content; showed good mucoadhesive strength; and good folding endurance. A 32 full factorial design was employed to study the effect of independent variables viz. levels of chitosan and PVP K30, which significantly influenced characteristics like swelling index, in-vitro mucoadhesive strength, in vitro drug release, and in-vitro residence time. Different penetration enhancers were tried to improve the permeation of sumatriptan succinate through buccal mucosa. Formulation containing 3% dimethyl sulfoxide showed good permeation of sumatriptan succinate through mucosa. Histopathological studies revealed no buccal mucosal damage. It can be concluded that buccal route can be one of the alternatives available for administration of sumatriptan succinate.  相似文献   

3.
Fluticasone propionate is a synthetic corticosteroid drug distinguished by its potent anti-inflammatory action with low systemic side effects in comparison to other corticosteroids making it a potential drug for local buccal delivery. The aim of the present study was to design mucoadhesive buccal film containing fluticasone that is aesthetically acceptable and could maintain local drug release for a sustained period to manage the sign and symptoms of severe erosive mouth lesions. Solvent casting technique was used in film preparation. Different polymeric blends were used either alone or in combination with mucoadhesive polymers, sodium carboxymethyl cellulose (SCMC), or Carbopol 971P at different concentrations. The physicochemical properties, in vitro mucoadhesion time as well as the drug release properties for all prepared formulations were determined. Selected formulations with adequate properties were further examined by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) and subjected to in vivo evaluation. Films containing hydroxypropyl methylcellulose (HPMC)/ethyl cellulose (EC) showed acceptable physicochemical properties, homogenous drug distribution, convenient mucoadhesion time, moderate swelling as well as sustained drug release up to 12 h. The biological performance of these formulations was assessed on healthy human volunteers and compared with a prepared mouthwash which showed enhanced pharmacokinetic parameters for the selected films in comparison to the mouthwash. The results revealed that the optimized formulation containing HPMC/EC and 10% SCMC could successfully achieve sustained drug release for 10 h which is considered promising for local treatment of severe mouth lesions.  相似文献   

4.
The aim of this work was the design of sustained-release mucoadhesive bilayered tablets, using mixtures of mucoadhesive polymers and an inorganic matrix (hydrotalcite), for the topical administration of flurbiprofen in the oral cavity. The first layer, responsible for the tablet retention on the mucosa, was prepared by compression of a cellulose derivative and polyacrylic derivative blend. The second layer, responsible for buccal drug delivery, was obtained by compression of a mixture of the same (first layer) mucoadhesive polymers and hydrotalcite containing flurbiprofen. Nonmedicated tablets were evaluated in terms of swelling, mucosal adhesion, and organoleptic characteristics; in vitro and in vivo release studies of flurbiprofen-loaded tablets were performed as well. The best results were obtained from the tablets containing 20 mg of flurbiprofen, which allowed a good anti-inflammatory sustained release in the buccal cavity for 12 hours, ensuring efficacious salivary concentrations, and led to no irritation. This mucoadhesive formulation offers many advantages over buccal lozenges because it allows for reduction in daily administrations and daily drug dosage and is suitable for the treatment of irritation, pain, and discomfort associated with gingivitis, sore throats, laryngopharyngitis, cold, and periodontal surgery. Moreover, it adheres well to the gum and is simple to apply, which means that patient compliance is improved. Published: July 13, 2007  相似文献   

5.
This work combines several methods in an integrated strategy to develop a matrix for buccal administration. For this purpose, tablets containing selected mucoadhesive polymers loaded with a model drug (omeprazole), free or in a complexed form with cyclodextrins, and in the absence and presence of alkali agents were subjected to a battery of tests. Mucoadhesion studies, including simple factorial analysis, in vitro release studies with both model-dependent and model-independent analysis, and permeation studies were performed. Mucoadhesive profiles indicated that the presence of the drug decreases the mucoadhesion profile, probably due its hydrophobic character. In tablets loaded with the drug complexed with β-cyclodextrin or methyl-β-cyclodextrin, better results were obtained with the methylated derivative. This effect was attributed to the fact that in the case of β-cyclodextrin, more hydroxyl groups are available to interact with the mucoadhesive polymers, thus decreasing the mucoadhesion performance. The same result was observed in presence of the alkali agent (l-arginine), in this case due to the excessive hydrophilic character of l-arginine. Drug release from tablets was also evaluated, and results suggested that the dissolution profile with best characteristics was observed in the matrix loaded with omeprazole complexed with methyl-β-cyclodextrin in the presence of l-arginine. Several mathematical models were applied to the dissolution curves, indicating that the release of the drug, in free or in complexed state, from the mucoadhesive matrices followed a super case II transport, as established on the basis of the Korsmeyer–Peppas function. The feasibility of drug buccal administration was assessed by permeation experiments on porcine buccal mucosa. The amount of drug permeated from mucoadhesive tablets presented a maximum value for the system containing drug complexed with the methylated cyclodextrin derivative in presence of l-arginine. According to these results, the system containing the selected polymer mixture and the drug complexed with methyl-β-cyclodextrin in presence of l-arginine showed a great potential as a buccal drug delivery formulation, in which a good compromise among mucoadhesion, dissolution, and permeation properties was achieved.  相似文献   

6.
Abstract

The purpose of this research was to develop cubosomal mucoadhesive in situ nasal gel to enhance the donepezil HCl delivery to the brain. Glycerol mono-oleate (GMO) and surfactant poloxamer 407 were used to prepare cubosomes. The developed formulations were characterized for particle size (PS), poly dispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE), transmission electron microscopy (TEM), in vitro drug release and in vivo bio-distribution study in blood and brain tissue. Central composite design was used for the optimization purpose and the selected formulation (containing GMO 2?g and poloxamer 1.5%) was prepared in presence of gellan gum and konjac gum as gelling agent and mucoadhesive agent respectively. The optimal cubosomal dispersion and optimal cubosomal mucoadhesive in situ nasal gel were subjected to in vivo bio-distribution studies in rat model. It showed significantly higher transnasal permeation and better distribution to the brain, when compared to the drug solution. Thus, the formulated cubosomal mucoadhesive in situ gel could be considered as a promising carrier for brain targeting of CNS acting drugs through the transnasal route.  相似文献   

7.
The aim of this work was to investigate the influence of particles on the properties of polymethacrylate films intended for buccal delivery. A solvent casting method was used with Eudragit RS and RL (ERS and ERL, respectively) as film-forming rate-controlling polymers, with caffeine as a water-soluble model drug. The physicochemical properties of the model films for a series of formulations with increasing concentrations of caffeine were determined in terms of morphology, mechanical and mucoadhesive properties, drug content uniformity, and drug release and associated kinetics. Typically regarded as non-mucoadhesive polymers, ERS and mainly ERL, were found to be good mucoadhesives, with ERL01 exhibiting a work of mucoadhesion (WoA) of 118.9 μJ, which was about five to six times higher than that observed for commonly used mucoadhesives such as Carbopol® 974P (C974P, 23.9 μJ) and polycarbophil (PCP, 17.4 μJ). The mucoadhesive force for ERL01 was found to be significantly lower yet comparable to C974P and PCP films (211.1 vs. 329.7 and 301.1 mN, respectively). Inspection of cross-sections of the films indicated that increasing the concentration of caffeine was correlated with the appearance of recrystallized agglomerates. In conclusion, caffeine agglomerates had detrimental effects in terms of mucoadhesion, mechanical properties, uniformity, and drug release at large particle sizes. ERL series of films exhibited very rapid release of caffeine while ERS series showed controlled release. Analysis of release profiles revealed that kinetics changed from a diffusion controlled to a first-order release mechanism.  相似文献   

8.
The aim of this work was to develop and characterize chitosan/gelatin films as innovative mucoadhesive system for buccal delivery of propranolol hydrochloride. FT-IR and TGA analysis confirmed the interaction between chitosan and gelatin. The presence of higher chitosan amounts in chitosan/gelatin films allowed the lowest percent water-uptake ability (235.1 ± 5.3%) and the highest in vivo residence time in the buccal cavity (240 ± 13 min). Moreover, the presence of mannitol in the formulation allowed 80% drug permeation through porcine buccal mucosa in 5 h. This behaviour suggests that the application of four and two films containing 5 mg of propranolol hydrochloride could be suitable for achieving the proposed daily dose for hypertension and atrial fibrillation treatment, respectively. Another interesting aspect of chitosan/gelatin films was their compatibility with buccal microflora in the absence of drug and their ability to determine growth inhibition for pathogen bacteria, but not for probiotic species, when loaded with drug.  相似文献   

9.
In order to improve the bioavailability of the antidepressant drug, venlafaxine hydrochloride, in situ mucoadhesive thermoreversible gel, was formulated using Lutrol F127 (18%) as a thermo gelling polymer. Mucoadhesion was modulated by trying carbopol 934, PVP K30, HPMC K4M, sodium alginate, tamarind seed gum, and carrageenan as mucoadhesive polymers. Results revealed that as the concentration of mucoadhesive polymer increased the mucoadhesive strength increased but gelation temperature decreased. Formulation was optimized on the basis of clarity, pH, gelation temperature, mucoadhesive strength, gel strength, viscosity, drug content, diffusion through sheep nasal mucosa, histopathological evaluation of mucosa, and pharmacodynamic study in rats. Final formulation T5 containing 18% Lutrol F127 and 0.3% PVP K30 was considered as an optimized formulation. T5 released 97.86 ± 0.073% drug in 150 min with a flux of 0.1545 mg cm−2 min−1 and gelation temperature 31.17 ± 0.30°C. Histopathological evaluation of nasal mucosa revealed that T5 formulation was safe for nasal administration as it caused no damage to nasal epithelium. From the results of pharmacodynamic study, mainly forced swim test (FST), it was concluded that venlafaxine hydrochloride was more effective as an antidepressant by nasal route as in situ gel nasal drops in comparison to oral administration of equivalent dose.Key words: lutrol F127, mucoadhesive, nasal in situ gel, thermoreversible, venlafaxine HCl  相似文献   

10.
The purpose of this research work was to establish mucoadhesive buccal devices of propranolol hydrochloride (PRH) in the forms of bilayered and multilayered tablets. The tablets were prepared using sodium carboxymethylcellulose (SCMC) and Carbopol-934 (CP) as bioadhesive polymers to impart mucoadhesion and ethyl cellulose (EC) to act as an impermeable backing layer. Buccal devices were evaluated by different parameters such as weight uniformity, content uniformity, thickness, hardness, surface pH, swelling index, ex vivo mucoadhesive strength, ex vivo mucoadhesion time, in vitro drug release, and in vitro drug permeation. As compared with bilayered tablets, multilayered tablets showed slow release rate of drug with improved ex vivo bioadhesive strength and enhanced ex vivo mucoadhesion time. The mechanism of drug release was found to be non-Fickian diffusion (value of n between 0.5 and 1.0) for both the buccal devices. The stability of drug in both the optimized buccal devices was tested for 6 hours in natural human saliva; both the buccal devices were found to be stable in natural human saliva. The present study concludes that mucoadhesive buccal devices of PRH can be a good way to bypass the extensive hepatic first-pass metabolism and to improve the bioavailability of PRH. Published: March 16, 2007  相似文献   

11.
The purpose of the present study was to synthesize gum kondagogu-g-poly(N-vinyl-2-pyrrolidone) and to evaluate its mucoadhesive properties. UV-assisted graft co-polymerization of N-vinyl-2-pyrrolidone on gum kondagogu was carried out employing three-factor, three-level central composite experimental designs. It was observed that the concentrations of N-vinyl pyrrolidone and ammonium persulphate exerted a significant antagonistic and synergistic influence on grafting efficiency respectively. The graft co-polymer was characterized by FT-IR, DSC and SEM study. Mucoadhesive properties of the graft-copolymer were evaluated by formulating buccal discs employing metronidazole as the model drug. On comparative evaluation buccal discs formulated using gum kondagogu-g-poly(N-vinyl pyrrolidone) showed higher ex vivo bioadhesion time than the discs formulated using gum kondagogu. In vitro release study showed an almost similar release profile of metronidazole from the buccal discs of gum kondagogu and gum kondagogu-g-poly(N-vinyl-2-pyrrolidone). Thus, grafting of N-vinyl-2-pyrrolidone on gum kondagogu enhances its mucoadhesion without significantly affecting the release behaviour.  相似文献   

12.
The purpose of this study was to develop and optimize formulations of mucoadhesive bilayered buccal tablets of pravastatin sodium using carrageenan gum as the base matrix. The tablets were prepared by direct compression method. Polyvinyl pyrrolidone (PVP) K 30, Pluronic® F 127, and magnesium oxide were used to improve tablet properties. Magnesium stearate, talc, and lactose were used to aid the compression of tablets. The tablets were found to have good appearance, uniform thickness, diameter, weight, pH, and drug content. A 23 full factorial design was employed to study the effect of independent variables viz. levels of carrageenan gum, Pluronic F 127 and PVP K30, which significantly influenced characteristics like in vitro mucoadhesive strength, in vitro drug release, swelling index, and in vitro residence time. The tablet was coated with an impermeable backing layer of ethyl cellulose to ensure unidirectional drug release. Different penetration enhancers were tried to improve the permeation of pravastatin sodium through buccal mucosa. Formulation containing 1% sodium lauryl sulfate showed good permeation of pravastatin sodium through mucosa. Histopathological studies revealed no buccal mucosal damage. It can be concluded that buccal route can be one of the alternatives available for the administration of pravastatin sodium.  相似文献   

13.
The development of an appropriate dosage form for pediatric patients needs to take into account several aspects, since adult drug biodistribution differs from that of pediatrics. In recent years, buccal administration has become an attractive route, having different dosage forms under development including tablets, lozenges, films, and solutions among others. Furthermore, the buccal epithelium can allow quick access to systemic circulation, which could be used for a rapid onset of action. For pediatric patients, dosage forms to be placed in the oral cavity have higher requirements for palatability to increase acceptance and therapy compliance. Therefore, an understanding of the excipients required and their functions and properties needs to be particularly addressed. This review is focused on the differences and requirements relevant to buccal administration for pediatric patients (compared to adults) and how novel dosage forms can be less invasive and more acceptable alternatives.  相似文献   

14.
The treatment of inflammatory bowel disease (IBD) recently has been revolutionized by the introduction of protein-based biologic therapies. However, biologic therapy is complicated by the requirement for administration with a needle, systemic side effects, and high cost. Particulate drug delivery systems have been shown to deliver drugs locally to the intestinal mucosa via oral administration. However, these systems have been largely unexplored for the delivery of biologics due to harsh particle fabrication conditions and the tendency of many particulate formulations to dissolve in the acidic upper GI tract. We have, therefore, fabricated an inexpensive and non-toxic novel microparticle capable of encapsulating proteins. We establish that the particle retains its contents at acidic pH and releases them at neutral pH. We also demonstrate particulate encapsulation of interleukin-10 (IL-10), a protein relevant to the treatment of IBD, at an encapsulation efficiency of 14.3 percent. Such a vehicle is promising for its oral route of administration and potential to decrease side effects and increase potency of biologics.  相似文献   

15.
One-size-fits-all intravenous delivery of biologics may be giving way to alternate delivery routes that enable safer and more efficient drug administration. Michael Eisenstein reports.  相似文献   

16.
The purpose of this research was to study mucoadhesive bilayer buccal tablets of propranolol hydrochloride using the bioadhesive polymers sodium alginate (Na-alginate) and Carbopol 934P (CP) along with ethyl cellulose as an impermeable backing layer. The tablets were evaluated for weight variation, thickness, hardness, friability, surface pH, mucoadhesive strength, swelling index, in vitro drug release, ex vivo drug permeation, ex vivo mucoadhesion, and in vivo pharmacodynamics in rabbits. Tablets containing Na-alginate and CP in the ratio of 5∶1 (F2) had the maximum percentage of in vitro drug release without disinte-gration in 12 hours. The swelling index was proportional to Na-alginate content and inversely proportional to CP content. The surface pH of all tablets was found to be satis-factory (7.0±1.5), close to neutral pH; hence, buccal cavity irritation should not occur with these tablets. The mechanism of drug release was found to be non-Fickian diffusion and followed zero-order kinetics. The formulation F4 was optimized based on good biodhesive strength (28.9±0.99 g) and sustained in vitro drug permeation (68.65%±3.69% for 12 hours). The behavior of formulation F4 was examined in human saliva, and both the drug and the buccal tablet were found to be stable. The formulation F4 was applied to rabbit oral mucosa for in vivo studies. The formulation inhibited isoprenaline-induced tachycardia. The studies conducted in rabbits confirmed the sustained release as compared with intravenous administration. Published: September 21, 2007  相似文献   

17.
Celecoxib (Cx) shows high efficacy in the treatment of osteoarthritis and rheumatoid arthritis as a result of its high specificity for COX-2, without gastrolesivity or interference with platelet function at therapeutic concentrations. Besides of anti-inflammatory effects, Cx also has a potential role for oral cancer chemoprevention. For these conditions, oral administration in long-term treatment is a concern due to its systemic side effects. However, local application at the site of injury (e.g., buccal inflammation conditions or chemoprevention of oral cancer) is a promising way to reduce its toxicity. In this study, the in vitro characterization of mucoadhesive chitosan (CHT) gels associated to Azone® was assessed to explore the potential buccal mucosal administration of Cx in this tissue. Rheological properties of gels were analyzed by a rheometer with cone-plate geometry. In vitro Cx release and permeability studies used artificial membranes and pig cheek mucosa, respectively. Mucoadhesion were measured with a universal test machine. CHT gels (3.0%) containing 2.0% or 3.0% Az showed more appropriate characteristics compared to the others: pH values, rheology, higher amount of Cx retained in the mucosa, and minimal permeation through mucosa, besides the highest mucoadhesion values, ideal for buccal application. Moreover, the flux (J) and amounts of drug released decreased with increased CHT and Az concentrations. CHT gels (3.0%) associated with 2.0% or 3.0% Az may be considered potential delivery systems for buccal administration of Cx.  相似文献   

18.
Cui F  He C  Yin L  Qian F  He M  Tang C  Yin C 《Biomacromolecules》2007,8(9):2845-2850
A novel smart drug delivery system (NP-Film) consisting of carboxylation chitosan-grafted nanoparticles (CCGNs) and bilaminated films, which were composed of the mucoadhesive chitosan-ethylenediaminetetraacetic acid hydrogel layer and the hydrophobic ethylcellulose layer, was developed for oral delivery of protein drugs. NP-Film was characterized by electron microscopy and fluorescence microscopy, and the results showed that the solid, spherical nanoparticles dispersed evenly in the porous structures of films. The properties of nanoparticles and films were investigated. The mucoadhesive force, CCGNs released from the NP-Film, and the toxicity of NP-Film were also evaluated. Results showed that the nanoparticles could reversibly open the tight junction of the intestine and inhibit trypsin activity. The release behavior of the nanoparticles from the NP-Film exhibited pH sensitivity. The drug delivery system possessed high mucoadhesive force and low intestinal toxicity. Therefore, the NP-Film would be a promising delivery carrier for protein drugs via oral administration.  相似文献   

19.
The present research work focused on the comparative assessment of porous versus nonporous films in order to develop a suitable buccoadhesive device for the delivery of glibenclamide. Both films were prepared by solvent casting technique using the 32 full factorial design, developing nine formulations (F1–F9). The films were evaluated for ex vivo mucoadhesive force, ex vivo mucoadhesion time, in vitro drug release (using a modified flow-through drug release apparatus), and ex vivo drug permeation. The mucoadhesive force, mucoadhesion time, swelling index, and tensile strength were observed to be directly proportional to the content of HPMC K4M. The optimized porous film (F4) showed an in vitro drug release of 84.47 ± 0.98%, ex vivo mucoadhesive force of 0.24 ± 0.04 N, and ex vivo mucoadhesion time of 539.11 ± 3.05 min, while the nonporous film (NF4) with the same polymer composition showed a release of 62.66 ± 0.87%, mucoadhesive force of 0.20 ± 0.05 N, and mucoadhesive time of 510 ± 2.00 min. The porous film showed significant differences for drug release and mucoadhesion time (p < 0.05) versus the nonporous film. The mechanism of drug release was observed to follow non-Fickian diffusion (0.1 < n < 0.5) for both porous and nonporous films. Ex vivo permeation studies through chicken buccal mucosa indicated improved drug permeation in porous films versus nonporous films. The present investigation established porous films to be a cost-effective buccoadhesive delivery system of glibenclamide.KEY WORDS: buccoadhesive drug delivery, glibenclamide, in vitro release and ex vivo permeation, porous film  相似文献   

20.
Nicotine (NCT) buccal tablets consisting of sodium alginate (SA) and nicotine–magnesium aluminum silicate (NCT–MAS) complexes acting as drug carriers were prepared using the direct compression method. The effects of the preparation pH levels of the NCT–MAS complexes and the complex/SA ratios on NCT release, permeation across mucosa, and mucoadhesive properties of the tablets were investigated. The NCT–MAS complex-loaded SA tablets had good physical properties and zero-order release kinetics of NCT, which indicate a swelling/erosion-controlled release mechanism. Measurement of unidirectional NCT release and permeation across porcine esophageal mucosa using a modified USP dissolution apparatus 2 showed that NCT delivery was controlled by the swollen gel matrix of the tablets. This matrix, which controlled drug diffusion, resulted from the molecular interactions of SA and MAS. Tablets containing the NCT–MAS complexes prepared at pH 9 showed remarkably higher NCT permeation rates than those containing the complexes prepared at acidic and neutral pH levels. Larger amounts of SA in the tablets decreased NCT release and permeation rates. Additionally, the presence of SA could enhance the mucoadhesive properties of the tablets. These findings suggest that SA plays the important role not only in controlling release and permeation of NCT but also for enhancing the mucoadhesive properties of the NCT–MAS complex-loaded SA tablets, and these tablets demonstrate a promising buccal delivery system for NCT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号