首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Raman spectra are presented for egg lecithin above and below the gelliquid crystal phase transition, and several regions of the Raman spectrum are shown to be sensitive to conformational changes in the hydrocarbon chains. These regions are used to investigate the effect of sonication on the structure of egg lecithin and dipalmitoyl lecithin vesicles. Sonication of both egg lecithin above Tm, and dipalmitoyl lecithin above and below Tm produces no change in the relative population of trans and gauche isomers in any of the systems studied. Sonication does however appear to effect interchain interactions, a possible consequence of imperfect packing towards the center of the bilayers in vesicle systems.  相似文献   

2.
Spin probes have been used to study at the molecular level the influence of cholesterol on bilayers of egg lecithin and dipalmitoyl lecithin. Distinct differences between the two lecithin systems were revealed. Increasing amounts of cholesterol result in extension of the fatty acid chains and decreased amplitude of motion of the long axes of the fatty acids in egg lecithin. In dipalmitoyl lecithin cholesterol causes an increase in the mobility and amplitude of motion of the fatty acid side chains, presumably due to alteration of the molecular interactions between phospholipids by relaxing the close packing of these molecules. These data provide an explanation for the condensing and fluidizing effects of cholesterol in water-containing phases and monolayers of egg lecithin and dipalmitoyl lecithin, respectively, and for the permeability behavior of egg lecithin and dipalmitoyl lecithin liposomes in the presence and absence of cholesterol. Differences are revealed between the spin bilayer environments in hydrated phospholipid films and vesicles.  相似文献   

3.
Effect of chain length on the stability of lecithin bilayers   总被引:1,自引:0,他引:1  
The shift reagent NaCl3 was added to vesicles of synthetic, saturated (DiC10-C16) lecithins and egg lecithin and the accessibility of the N(CH3)3 groups to Na3+ ions was studied by NMR. Long chain lecithins, e.g. dipalmitoyl and egg lecithin form bilayers “stable” on the time scale of our experiments and practically impermeable to cations. Short chain lecithins on the other hand form short-lived vesicles surrounded by unstable bilayers which are not effective cation barriers. Ion transport across the latter lecithin bilayers may involve, besides passive diffusion, collision-induced transient rupture and resealing of bilayers coupled with ion movement.  相似文献   

4.
The kinetics of molecular exchange between lipid bilayers are studied using a special fluoresence technique. Pyrene and pyrene decanoic acid are chosen as typical examples of an apolar and amphiphilic molecule. Their property of forming dimers in the excited state (excimer) is exploited. The time dependencies of monomer and excimer intensities after rapid mixing of vesicles doped with fluorescent probe with undoped ones are studied by stopped-flow technique. The transient curves reveal the information on the exchange kinetics. A theoretical analysis shows that the molecular exchange follows a first order kinetics. Surprisingly short half life-times tex for this exchange process are obtained (for dipalmitoyl phosphatidylcholine tex = 3.3 s for T = 23 °C, tex = 0.5 s for T = 68 °C). Multilamellar systems (onion like structure) show much slower exchange rates. The exchange rates are nearly equal for polar and unpolar molecules. Addition of cholesterol has a strong reducing effect on this rate. Charging of dipalmitoyl phosphatidylcholine vesicle surfaces by the addition of (a) EuCl3 to the aqueous phase and (b) dipalmitoyl phosphatidic acid to the lipid phase reduces the exchange rate by about an order of magnitude above the phase transition.In a separate experiment it is shown that the lipid exchange or fusion for two different lipids is a much slower process compared to the label exchange. In fact vesicles kept below the phase transition temperature Ttr for both lipids, do not fuse even after 70 h. Noticeable fusion occurs after 10 h when the mixture stays above Ttr. Experiment shows that the fusion of pure lipid vesicles is not very much affected by the presence of a charged lipid.Change in concentration of the monovalent ions in the aqueous solution by two orders of magnitude does not have an appreciable effect on the exchange rate of phospholipids.  相似文献   

5.
Bacteriorhodopsin has been reconstituted into lipid vesicles with dipalmitoyl and dimyristoyls phosphatidylcholine. Circular dichroism (CD) measurements show that the proteins are in a monomeric state above the main lipid phase transition temperature (Tc), 41 and 23°C for dipalmitoyl and dimyristoyl phosphatidylcholine, respectively. Below Tc, the CD spectrum is the same as that found for the purple membrane. The latter result implies that the orientation of the chromophore at these temperatures is most likely the same as in the purple membrane (70° ± 5° from the normal to the membrane plane).Transient dichroism measurements show that below Tc the proteins are immobile, while above this temperature protein rotation around an axis normal to the plane of the membrane is occurring. In addition, from the data the angle of the chromophore for the rotating proteins with respect to the rotational diffusion axis can be calculated. This angle is found to be 30° ± 3° and 29° ± 4° in dimyristoyl phosphatidylcholine and dipalmitoyl phosphatidylcholine, respectively. This is considerably smaller than the value of 70° ± 5° for the natural biomembrane. A reversible reorientation of the chromophore above and below the respective main Tc transition temperature could explain the change of angle observed provided that all the molecules rotate above Tc.  相似文献   

6.
The maximum molar ratio of lecithin:cholesterol in aqueous dispersions has been reported to be 2:1, 1:1, or 1:2. The source of the desparate results has been examined in this study by analyzing (a) the phase relations in anhydrous mixtures (from which most dispersions are prepared) and (b) various methods of preparing aqueous dispersions, with the purpose of avoiding the formation of metastable states that may be responsible for the variability of the lecithin-cholesterol stoichiometry. Temperature-composition phase diagrams for anhydrous mixtures of cholesterol (CHOL) with dimyristoyl (DML) and with dipalmitoyl (DPL) lecithin were obtained by differential scanning calorimetry (DSC). Complexes form with molar ratios for lecithin:CHOL of 2:1 and 1:2; they are stable up to 70°C. When x(CHOL) < 0.33, two phases coexist: complex (2:1) plus pure lecithin; when 0.33 < x(CHOL) < 0.67 complexes (2:1) and (1:2) coexist as separate phases. The corresponding phase diagram in water for these mixtures was determined by DSC and isopycnic centrifugation in D2O-H2O gradients. Aqueous dispersions were prepared by various methods (vortexing, dialysis, sonication) yielding identical results except as noted below. The data presented supports the following phase relations. When x(CHOL) < 0.33, two lipid phases coexist: pure lecithin plus complex (2:1) where the properties of the lecithin phase are determined by whether the temperature is below or above Tc, the gel-liquid crystal transition temperature. Therefore, complex (2:1) will coexist with gel state below Tc and with liquid crystal above Tc. The densities follow in the order gel > complex (2:1) > liquid crystal. The density of complex (2:1) is less sensitive to temperature in the range 5°-45°C compared to the temperature dependence for DML and DPL where large changes in density occur at Tc. When x(CHOL) > 0.33, CHOL phase coexists with complex (2:1); anhydrous complex (1:2) is apparently not stable in H2O. The results are independent of the method and temperature used for preparing the lipid dispersions. However, when dispersions are prepared by sonication or with solvents at T > Tc, an apparent 1:1 complex is formed. Evidence suggests the 1:1 complex is metastable.  相似文献   

7.
The lipid distribution in binary mixed membranes containing charged and uncharged lipids and the effect of Ca2+ and polylysine on the lipid organization was studied by the spin label technique. Dipalmitoyl phosphatidic acid was the charged, and spin labelled dipalmitoyl lecithin was the uncharged (zwitterionic) component. The ESR spectra were analyzed in terms of the spin exchange frequency, Wex. By measuring Wex as a function of the molar percentage of labelled lecithin a distinction between a random and a heterogeneous lipid distribution could be made. It is established that mixed lecithinphosphatidic acid membranes exhibit lipid segregation (or a miscibility gap) in the fluid state. Comparative experiments with bilayer and monolayer membranes strongly suggest a lateral lipid segregation. At low lecithin concentration, aggregates containing between 25% and 40% lecithin are formed in the fluid phosphatidic acid membrane. This phase separation in membranes containing charged lipids is understandable on the basis of the Gouy-Chapman theory of electric double layers.In dipalmitoyl lecithin and in dimyristoyl phosphatidylethanolamine membranes the labelled lecithin is randomly distributed above the phase transition and has a coefficient of lateral diffusion of D = 2.8·10?8 cm2/s at 59°C.Addition of Ca2+ dramatically increases the extent of phase separation in lecithin-phosphatidic acid membranes. This chemically (and isothermally) induced phase separation is caused by the formation of crystalline patches of the Ca2+-bound phosphatidic acid. Lecithin is squeezed out from these patches of rigid lipid. The observed dependence of Wex on the Ca2+ concentration could be interpreted quantitatively on the basis of a two-cluster model. At low lecithin and Ca2+ concentration clusters containing about 30 mol% lecithin are formed. At high lecithin or Ca2+ concentrations a second type of precipitation containing 100% lecithin starts to form in addition. A one-to-one binding of divalent ions and phosphatidic acid at pH 9 was assumed. Such a one-to-one binding at pH 9 was established for the case of Mn2+ using ESR spectroscopy.Polylysine leads to the same strong increase in the lecithin segregation as Ca2+. The transition of the phosphatidic acid bound by the polypeptide is shifted from Tt = 47.5° to Tt = 62°C. This finding suggests the possibility of cooperative conformational changes in the lipid matrix and in the surface proteins in biological membranes.  相似文献   

8.
Abstract

The solubilisation by Triton X-100 of large unilamellar vesicles consisting of pure egg sphingomyelin (Tm 39°) or sphingomyelinxholesterol mixtures has been tested at various temperatures. For pure sphingomyelin, solubilisation occurs most readily at temperatures just below Tm. In general, egg sphingomyelin is solubilised by Triton X-100 more easily than egg phosphatidylcholine. Mixtures of sphingomyelin and cholesterol are detergent-insoluble under most conditions. Infrared spectroscopy has been applied to explore the interactions of cholesterol and sphingomyelin at the level of the lipid-water interface. Moreover, various cholesterol analogues (cholestane, cholestanone, androstenol) have been used in parallel solubilisation experiments and IR observations. The results show that cholesterol modifies the conformation (or H-bonding properties, or both) of the sphingomyelin polar head-group, both above and below Tm. Moreover, both the hydroxyl group at C3 and the hydrocarbon chain at C17 of the steroid nucleus appear to be required for insolubility to be detected. Perturbation of the polar environment of the sphingomyelin: cholesterol bilayers by 3M urea makes them soluble in Triton X-100. These results may be related to the observed insolubility of cell membrane 'rafts' in cold detergent.  相似文献   

9.
Proton nuclear magnetic resonance (PMR) spectra at 270 MHz of aqueous dispersions of nonsonicated egg lecithin, dipalmitoyl lecithin, egg lecithin-cholesterol (1 : 1) and dipalmitoyl lecithin-cholesterol (1 : 1), together with PMR spectra of mitochondrial membranes and their extracted lipids, have been obtained.Carbon-13 nuclear magnetic resonance (CMR) spectra at 25.2 MHz of egg lecithin, egg lecithin-cholesterol (1 : 1) and sphingomyelin, together with CMR spectra of chloroplast and mitochondrial membranes, and erythrocyte ghosts, have also been obtained. The results obtained using CMR appear very promising for further study of intact membrane structure.It is suggested, on the basis of CMR evidence, that the proteins in mitochondrial membranes may be considerably less mobile than the lipids.  相似文献   

10.
The binding of polymyxin-B to lipid bilayer vesicles of synthesis phosphatidic acid was studied using fluorescence, ESR spectroscopy and electron microscopy. 1,6-Diphenylhexatriene (which exhibits polarized fluorescence) and pyrene decanoic acid (which forms excimers) were used as fluorescene probes to study the lipid phase transition.The polymyxin binds strongly to negatively charged lipid layers. As a result of lipid/polymyxin chain-chain interactions, the transition temperature of the lipid. This can be explained in terms of a slight expansion of the crystalline lipid lattice (Lindeman's rule). Upon addition of polymyxin to phosphatidic acid vesicles two rather sharp phase transitions (with ΔT = 5°C) are observed. The upper transition (at Tu) is that of the pure lipid and the lower transition (at T1) concerns the lipids bound to the peptide. The sharpness of these transitions strongly indicates that the bilayer is characterized by a heterogeneous lateral distribution of free and bound lipid regions, one in the crystalline and the other in the fluid state. Such a domain structure was directly observed by electron microscopy (freeze etching technique). In (1:1) mixtures of dipalmitoyl phosphatidic acid and egg lecithin, polymyxin induces the formation of domains of charged lipid within the fluid regions of egg lecithin.With both fluorescence methods the fraction of lipid bound to polymxin-B as a function of the peptide concentration was determined. S-shaped binding curves were obtained. The same type of binding curve is obtained for the interaction action of Ca2+ with phosphatidic acid lamellae, while the binding of polylysine to such membranes is characterized by a linear or Langmuir type binding curve. The S-shaped binding curve can be explained in terms of a cooperative lipid-ligand (Ca2+, polymyxin) interaction.A model is proposed which explains the association of polymyxing within the membrane plane in terms of elastic forces caused by the elastic distortion of the (liquid crystalline) lipid layer by this highly asymmetric peptide.  相似文献   

11.
Perturbations induced by a toxic lectin (ricin) on lipid organisation of model membranes prepared with DPPC and DPPC-cerebrosides mixtures have been analysed by Raman and infrared spectroscopy, two powerful and non-invasive methods. Our approach involves the observation of changes in the vibrational spectra of liquid multilayers in the PO 2 - , C=0 and CH2 spectral regions for two lipid: ricin molar ratios (225:1, 75:1).The interfacial and polar regions of the multilayers, analysed by FTIR, appear to be perturbed by the protein. With both kinds of membranes, ricin mainly perturbs the C=0 ester groups of the sn-2 acylchain of DPPC. In the PO 2 - stretching region, the frequency shifts are correlated with changes in polar group hydration.In the hydrophobic core of the multilayer membrane studied by Raman spectroscopy, the interaction of ricin is associated with changes in lipid packing. These perturbations depend upon the lipid composition of the membrane. With DPPC membranes, an affect is detected at temperatures lower than T m .It corresponds to a decrease of the lipid ordering. With DPPC-cer membranes, the protein increases the acylchain packing order regardless of the temperature of the experiments (10°C<T<75°C). No perturbation of T m is observed after addition of ricin to either DPPC or DPPC-cer membranes.The different perturbations detected by Raman and FTIR suggest that ricin mainly interacts with the interfacial domains of the membranes.  相似文献   

12.
The thermotropic behaviour of dipalmitoyl phosphatidylcholine analogues with a varying number (n) of CH2 groups between the phosphate and the quaternary ammonium has been investigated. The temperature (Tm) and the enthalphy (ΔH) of the phase transition are non-monotonous functions of the number of CH2 groups. Tm oscillates between 40 and 45°C and ΔH between 7 and 13 kcal/mol for a variation of n between 2 and 11.It is concluded that the hydrocarbon chains in the head groups do not penetrate the hydrocarbon region and do not contribute directly to the melting of the acyl chains. It is suggested that their length may affect the critical ballance between the attractive and the repulsive forces within the bidimensional lattice of the head groups.Copolypeptides of lysine with phenylalanine do not appreciably affect the Tm but have a pronounced effect on ΔH of the lipid phase transition, which depends strongly on the ratio of the two amino acids in the polypeptide. The effect of copolypeptide of any defined composition on ΔH is also a non-monotonous function of the number of CH2 groups in the phosphatidylcholine head group, but it does not parallel completely the oscilations in the Tm and ΔH of the pure lipids.  相似文献   

13.
Differential scanning calorimetry has been used for the first time to measure the specific heat, Cp, as a function of temperature in the single phase regions above and below the main phase transition temperature, Tm, for dispersions of saturated phosphatidylcholines and phosphatidylethanolamines. Within error limits Cp, when expressed per gram, does not vary in any systematic way with chain length or headgroup. Its temperature dependence in both single phase regions qualitatively resembles that of n-alkanes. Contributions to Cp from intrachain vibrations and interchain van der Waals' interactions have been calculated and account for nearly all the measured Cp at temperatures above Tm. However, these contributions do not yield the observed temperature dependence below Tm. It is conjectured that such a temperature dependence arises from the unhindering of chain vibrations as the lipids undergo thermal expansion, and the result of a preliminary calculation which supports this conjecture is presented.  相似文献   

14.
Sharon S. Yu  Hsueh Jei Li 《Biopolymers》1973,12(12):2777-2788
Protamine–DNA complexes prepared by the method of direct and slow mixing in 2.5 × 10?4M EDTA, pH 8.0, have been studied by thermal denaturation and circular dichroism. The complexes show biphasic melting with Tm at about 50 °C corresponding to the melting of free DNA regions and Tm′ at about 92 °C corresponding to the melting of protamine-bound regions. In protamine-bound regions there are 1.38 amino acid residues per nucleotide, indicating a nearly completely charge neutralization. Tm is increased but Tm′ is not when the ionic strength of the buffer is raised. This also supports a full charge neutralization in protamine-bound regions. The circular dichroism of the complexes can be decomposed into two components, Δε0 of free DNA regions in B-form conformation and Δεb of protamine-bound regions in a characteristic conformation neither that of B- nor C-form but somewhere between them.  相似文献   

15.
Fluorine-19 nuclear magnetic resonance spectroscopy is applied to the study of the environment of dipalmitoyl phosphatidylcholine-bound fluorinated ether anesthetics (enflurane, fluoroxene and methoxyflurane) both below and above the lipid gel to liquid crystal phase transition temperature. Line widths and spin-lattice relaxation time (T1) measurements are consistent with substantial immobilization of the lipid-bound anesthetic molecules. Heating anesthetic/lipid mixtures above the lipid transition temperature leads to narrowing of the lipid-bound anesthetic fluorine resonances accompanied by little or no change in anesthetic fluorine-19 chemical shifts, suggesting that although the mobility of the bound anesthetic increases at the higher temperature, the nature of the anesthetic-lipid interaction changes little as a result of this phase change. Differential scanning calorimetric studies of the effects of these anesthetics on the phase transition behavior of the phospholipid indicate that the regions of the bilayer in which volatile anesthetics partition at lower concentrations are different from the regions in which they partition at higher concentrations.  相似文献   

16.
H J Li  B Brand  A Rotter  C Chang  M Weiskopf 《Biopolymers》1974,13(8):1681-1697
Thermal denaturation of direct-mixed and reconstituted polylysine–DNA complexes in 2.5 × 10?4 M EDTA, pH 8.0 and various concentrations of NaCl has been studied. For both complexes, increasing ionic strength of the solution raises Tm, the melting temperature of free base pairs. The linear dependence of Tm on log Na+ indicates that the concept of electrostatic shielding on phosphate lattice of an infinitely long pure DNA by Na+ can be applied to short free DNA segments in a nucleoprotein. For a direct-mixed polylysine–DNA complex, the melting temperature of bound base pairs Tm′ remains constant at various ionic strengths. On the other hand, the Tm′ in a reconstituted polylysine–DNA complex is shifted to lower temperature at higher ionic strength. This phenomenon occurs for reconstituted complex with long polylysine of one thousand residues or short polylysine of one hundred residues. It is shown that such a decrease of Tm′ is not due to a reduction of coupling melting between free and bound regions in a complex when the ionic strength is raised. It is also not due to intermolecular or intramolecular change from a reconstituted to a direct-mixed complex. It is suggested that this phenomenon is due to structural change on polylysine-bound regions by ionic strength. It is suggested further that Na+ may replace water molecules and bind polylysine-bound regions in a reconstituted complex. Such a dehydration effect destabilizes these regions and lowers Tm′. This explanation is supported by circular dichroism (CD) results.  相似文献   

17.
36 x 10(7) WBC were isolated from 120 ml heparinized venous blood by 5% dextran T-500 sedimentation. 20 mg egg lecithin and 20 mg dipalmitoyl lecithin were respectively pretreated in 2 ml 0.15 M Tris buffer by vibration and sonication. WBC were incubated with the pretreated lecithins for 20 min. Leukotrienes (LTs) were identified by HPLC and bioassay, and quantified with an RIA Kit. Crude incubation medium of both lecithin groups caused guinea pig ileum contractions which were antagonized with FPL55712. Incubation media were partially purified with Bond elut C18. Purified samples of both lecithin groups showed LTC4 and LTD4 peaks on HPLC. LTC4 production (pg/10(7) WBC, M +/- SD) was 194.5 +/- 61.7 (n = 5) in control group, 348.9 +/- 95.4 (n = 6) in dipalmitoyl lecithin group, 543.8 +/- 105.6 (n = 6) in egg lecithin group and 105.62 +/- 63.2 (n = 6) in AA-861 + dipalmitoyl lecithin group. LTC4 production of both lecithin groups was significantly higher than that of control group (P less than 0.01 in dipalmitoyl lecithin group and P less than 0.001 in egg lecithin group). Both egg lecithin and dipalmitoyl lecithin enhanced LT production from WBC. LT production was suppressed in the presence of AA-861. The mechanism of the enhancement in LT production is unclear, but these lecithins are apparently not substrates because dipalmitoyl lecithin contains no arachidonic acid.  相似文献   

18.
M J Tunis  J E Hearst 《Biopolymers》1968,6(9):1325-1344
The hydration of DNA is an important factor in the stability of its secondary structure. Methods for measuring the hydration of DNA in solution and the results of various techniques are compared and discussed critically. The buoyant density of native and denatured T-7 bacteriophage DNA in potassium trifluoroacetate (KTFA) solution has been measured as a function of temperature between 5 and 50°C. The buoyant density of native DNA increased linearly with temperature, with a dependence of (2.3 ± 0.5) × 10?4 g/cc-°C. DNA which has been heat denatured and quenched at 0°C in the salt solution shows a similar dependence of buoyant density on temperature at temperatures far below the Tm, and above the Tm. However, there is an inflection region in the buoyant density versus T curve over a wide range of temperatures below the Tm. Optical density versus temperature studies showed that this is due to the. inhibition by KTFA of recovery of secondary structure on quenching. If the partial specific volume is assumed to be the same for native and denatured DNA, the loss of water of hydration on denaturation is calculated to be about 20% in KTFA at a water activity of 0.7 at 25°C. By treating the denaturation of DNA as a phase transition, an equation has immmi derived relating the destabilizing effect of trifluoroacetate to the loss of hydration on denaturation. The hydration of native DNA is abnormally high in the presence of this anion, and the loss of hydration on denaturation is greater than in CsCl. In addition, trifluoroacetate appears to decrease the ΔHof denaturation.  相似文献   

19.
Raman spectroscopy and X-ray diffraction are used to study the effect of heat and Ca2+ on dimyristoylphosphatidylethanolamine dispersions. Unlike phosphatidylcholine dispersions, dimyristoylphosphatidylethanolamine bilayers (at pH 8) require heating above Tm in order for hydration to occur and apparently bind Ca2+ at very low levels. These results are related to models for membrane fusion.  相似文献   

20.
A theory explicitly allowing the possibility of aggregation of multistrand biopolymers is proposed. It is found that the same secondary bonds responsible for stabilizing the native structure at low temperature will promote aggregation in the thermal denaturation region for sufficiently long chains. A requirement for both open and zippered regions dictates that the aggregation region does not extend far below Tm. However, its width, or extension on the high-temperature side of Tm, is a strongly increasing function of chain length and also of the cooperativity parameter. The present theoretical results obtained for DNA and collagen with almost no adjustable parameters are in good qualitative agreement with a number of previously poorly understood experimental observations. The significance of such a spontaneous aggregation phenomenon for genetic recombination is noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号