共查询到20条相似文献,搜索用时 25 毫秒
1.
Ute Achenbach Joao Paulo Evgenyia Ilarionova Jens Lübeck Josef Strahwald Eckhard Tacke Hans-Reinhard Hofferbert Christiane Gebhardt 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2009,118(3):619-629
The damage caused by the parasitic root cyst nematode Globodera pallida is a major yield-limiting factor in potato cultivation . Breeding for resistance is facilitated by the PCR-based marker ‘HC’, which is diagnostic for an allele conferring high resistance
against G. pallida pathotype Pa2/3 that has been introgressed from the wild potato species Solanum vernei into the Solanum tuberosum tetraploid breeding pool. The major quantitative trait locus (QTL) controlling this nematode resistance maps on potato chromosome
V in a hot spot for resistance to various pathogens including nematodes and the oomycete Phytophthora infestans. An unstructured sample of 79 tetraploid, highly heterozygous varieties and breeding clones was selected based on presence
(41 genotypes) or absence (38 genotypes) of the HC marker. Testing the clones for resistance to G. pallida confirmed the diagnostic power of the HC marker. The 79 individuals were genotyped for 100 single nucleotide polymorphisms
(SNPs) at 10 loci distributed over 38 cM on chromosome V. Forty-five SNPs at six loci spanning 2 cM in the interval between
markers GP21-GP179 were associated with resistance to G. pallida. Based on linkage disequilibrium (LD) between SNP markers, six LD groups comprising between 2 and 18 SNPs were identified.
The LD groups indicated the existence of multiple alleles at a single resistance locus or at several, physically linked resistance
loci. LD group C comprising 18 SNPs corresponded to the ‘HC’ marker. LD group E included 16 SNPs and showed an association
peak, which positioned one nematode resistance locus physically close to the R1 gene family.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
2.
Marczewski W Flis B Syller J Strzelczyk-Zyta D Hennig J Gebhardt C 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2004,109(8):1604-1609
A novel locus for potato resistance to potato leafroll virus (PLRV) was characterized by inheritance studies and molecular mapping. The diploid parental clone DW 91-1187 was resistant to PLRV accumulation in both inoculated plants and their tuber progeny. The resistance to PLRV accumulation present in DW 91-1187 was not transmitted to any F1 offspring when crossed with a PLRV susceptible clone. Instead, one half of the F1 individuals exhibited undetectable amounts of PLRV as determined by ELISA during the primary infection assay, but accumulated PLRV in their tuber progeny plants. The other half was clearly infected both in the inoculated and tuber-born plants. The inheritance of resistance to PLRV accumulation may be explained by a model of two complementary alleles of a single gene (PLRV.4) or by two complementary genes that are closely linked in repulsion phase. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers linked to the PLRV.4 locus were selected. The two complementary factors were closely linked in coupling phase to the alternative alleles UBC864600 and UBC864800 of DNA marker UBC864. These markers may be used for marker-assisted selection of genotypes having both factors for resistance to PLRV accumulation. The PLRV.4 locus was mapped to a central position on linkage group XI of the potato molecular map, where no resistance locus has been mapped previously. 相似文献
3.
A quantitative trait locus of Agaricus bisporus resistance to Pseudomonas tolaasii is closely linked to natural cap color. 总被引:1,自引:0,他引:1
F Moquet C Desmerger M Mamoun M Ramos-Guedes-Lafargue J M Olivier 《Fungal genetics and biology : FG & B》1999,28(1):34-42
A quantitative trait locus (QTL) of resistance to Pseudomonas tolaasii was detected in Agaricus bisporus using a cross between a wild strain from the Sonoran desert and a cultivated strain. The resistance QTL was strongly linked with the brown color allele of PPC1. This QTL explained about 30% of the variation observed for living bacteria-induced symptoms. The use of bacterial toxin did not reproduce living bacteria symptoms but revealed the same QTL. The latter QTL was not affected by environmental variation. No relation was found between the resistance QTL and the tyrosinase gene, which is involved in the browning process. 相似文献
4.
Marczewski W Strzelczyk-Zyta D Hennig J Witek K Gebhardt C 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2006,112(7):1232-1238
Two new loci for resistance to potato virus M (PVM), Gm and Rm, have been mapped in potato. The gene Gm was derived from Solanum gourlayi, whereas, Solanum megistacrolobum is the source of the gene Rm. Gm confers resistance to PVM infection after mechanical inoculation. Rm induces a hypersensitive response in potato plants. Two diploid populations segregating for Gm and Rm, bulked segregant analysis (BSA) using random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR), and
available potato molecular maps were instrumental for mapping the resistance loci. The novel locus Gm was mapped to a central region on potato chromosome IX. The locus Rm was placed on the short arm of chromosome XI, close to the marker loci GP250 and GP283, where a hotspot for monogenic and polygenic resistance to diverse pathogens is located in the potato and tomato genome. 相似文献
5.
J Buxton P Shelbourne J Davies C Jones M B Perryman T Ashizawa R Butler D Brook D Shaw P de Jong 《Genomics》1992,13(3):526-531
Myotonic dystrophy (DM) is caused by a defect in an unknown gene that maps to 19q13.3, flanked by the tightly linked markers ERCC1 on the proximal side and D19S51 on the distal side. We report the isolation and characterization of overlapping YAC and cosmid clones around D19S51 for the construction of a physical map around this locus. The resulting contig contains the markers D19S51 and D19S62 (another new marker tightly linked to the DM locus) and the distal breakpoint of a radiation hybrid cell line used in the physical mapping of the DM region. We have compared the restriction maps of the YACs and cosmids with that of the genome to investigate the fidelity of these clones. 相似文献
6.
Roberto Pilu Andrea Bucci Laura Casella Chiara Lago Francesco Cerino Badone Elena Cassani Michela Landoni 《Molecular breeding : new strategies in plant improvement》2012,30(2):799-807
We produced and studied for 3?years two synthetic populations of maize differing in their constitution only for the selected alleles present at the red color 1 (r1) locus (R-sc vs. r?Cr). r1 is a regulatory gene conferring anthocyanin pigmentation in different tissues: the R-sc allele confers pigmentation only in the aleurone seed layer, while the r?Cr allele confers pigmentation in several tissues such as root, silk and anther but the seed is colourless. The colourless population (r?Cr/r?Cr) was characterized by improved agronomic features, such as ear weight and plant height, compared with the R-sc/R-sc coloured population. This finding was confirmed by studying single F4 R/r families where the presence of the r?Cr allele conferred positive features, acting as a dominant trait. Quantitative trait locus (QTL) analysis performed using molecular markers on the long arm of chromosome 10 (bin 10.06), where the r1 gene maps, identified a QTL map position for plant height tightly associated to the r1 gene. Thus the r1 gene may represent a major QTL or it could be closely linked to another gene involved in the agronomic performance of the two populations studied. 相似文献
7.
Reamon-Büttner Stella Marie Schondelmaier Jörg Jung Christian 《Molecular breeding : new strategies in plant improvement》1998,4(2):91-98
Nine AFLP markers linked to the sex locus in Asparagus officinalis L. have been identified by non-radioactive AFLP technique and bulked segregant analysis. A composite map of one F2 and two F1 populations identified three very tightly linked markers. These markers did not give recombinants in the three different populations and mapped 0.5, 0.7 and 1 cM to the sex locus. Codominant scoring of the markers in the F2 population from a selfed andromonoecious plant could distinguish the XX, XY and YY asparagus plants. The AFLP markers were isolated from the gel and cloned into plasmid vectors. The marker E41M50, which is a low-copy sequence and did not give any recombinants in the screened populations, detected polymorphism between female and male plants when used as RFLP probe. The AFLP markers we obtained are important to plant breeding, particularly in the development of sex specific PCR primers that could be used in the screening of different asparagus plants at the seedling stage. They are likewise important in the elucidation of the mechanisms underlying sex determination and differentiation in this species. 相似文献
8.
Agustin Barría Trໍng Quíc Tr໋nh Mahirah Mahmuddin Carolina Pealoza Athina Papadopoulou Ophelie Gervais V. Mohan Chadag John A. H. Benzie Ross D. Houston 《Heredity》2021,127(3):334
Enhancing host resistance to infectious disease has received increasing attention in recent years as a major goal of farm animal breeding programs. Combining field data with genomic tools can provide opportunities to understand the genetic architecture of disease resistance, leading to new opportunities for disease control. In the current study, a genome-wide association study was performed to assess resistance to the Tilapia lake virus (TiLV), one of the biggest threats affecting Nile tilapia (Oreochromis niloticus); a key aquaculture species globally. A pond outbreak of TiLV in a pedigreed population of the GIFT strain was observed, with 950 fish classified as either survivor or mortality, and genotyped using a 65 K SNP array. A significant QTL of large effect was identified on chromosome Oni22. The average mortality rate of tilapia homozygous for the resistance allele at the most significant SNP (P value = 4.51E−10) was 11%, compared to 43% for tilapia homozygous for the susceptibility allele. Several candidate genes related to host response to viral infection were identified within this QTL, including lgals17, vps52, and trim29. These results provide a rare example of a major QTL affecting a trait of major importance to a farmed animal. Genetic markers from the QTL region have potential in marker-assisted selection to improve host resistance, providing a genetic solution to an infectious disease where few other control or mitigation options currently exist.Subject terms: Quantitative trait loci, Quantitative trait, Genetic markers, Animal breeding, Genome-wide association studies 相似文献
9.
Identification of molecular markers linked to quantitative trait loci for soybean resistance to corn earworm 总被引:7,自引:0,他引:7
B. G. Rector J. N. All W. A. Parrott H. R. Boerma 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1998,96(6-7):786-790
One hundred and thirty nine restriction fragment length polymorphisms (RFLPs) were used to construct a soybean (Glycine max L. Merr.) genetic linkage map and to identify quantitative trait loci (QTLs) associated with resistance to corn earworm (Helicoverpa zea Boddie) in a population of 103 F2-derived lines from a cross of ‘Cobb’ (susceptible) and PI229358 (resistant). The genetic linkage map consisted of 128 markers
which converged onto 30 linkage groups covering approximately 1325 cM. There were 11 unlinked markers. The F2-derived lines and the two parents were grown in the field under a plastic mesh cage near Athens, Ga., in 1995. The plants
were artificially infested with corn earworm and evaluated for the amount of defoliation. Using interval-mapping analysis
for linked markers and single-factor analysis of variance (ANOVA), markers were tested for an association with resistance.
One major and two minor QTLs for resistance were identified in this population. The PI229358 allele contributed insect resistance
at all three QTLs. The major QTL is linked to the RFLP marker A584 on linkage group (LG) ‘M’ of the USDA/Iowa State University
public soybean genetic map. It accounts for 37% of the total variation for resistance in this cross. The minor QTLs are linked
to the RFLP markers R249 (LG ‘H’) and Bng047 (LG ‘D1’). These markers explain 16% and 10% of variation, respectively. The
heritability (h2) for resistance was estimated as 64% in this population.
Received: 15 October 1997 / Accepted: 4 November 1997 相似文献
10.
A novel quantitative trait locus for Fusarium head blight resistance in chromosome 7A of wheat 总被引:1,自引:0,他引:1
Jayatilake DV Bai GH Dong YH 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2011,122(6):1189-1198
A Chinese Spring-Sumai 3 chromosome 7A disomic substitution line (CS-Sumai 3-7ADSL) was reported to have a high level of Fusarium
head blight (FHB) resistance for symptom spread within a spike (Type II) and low deoxynivalenol accumulation in infected kernels
(Type III), but a quantitative trait locus (QTL) on chromosome 7A has never been identified from this source. To characterize
QTL on chromosome 7A, we developed 191 7A chromosome recombinant inbred lines (7ACRIL) from a cross between Chinese Spring
and CS-Sumai 3-7ADSL and evaluated both types of resistance in three greenhouse experiments. Two major QTL with Sumai 3 origin,
conditioning both Type II and III resistance, were mapped in the short arm of chromosomes 3B (3BS) and near the centromere
of chromosome 7A (7AC). The 3BS QTL corresponds to previously reported Fhb1 from Sumai 3, whereas 7AC QTL, designated as Fhb7AC, is a novel QTL identified from CS-Sumai 3-7ADSL in this study. Fhb7AC explains 22% phenotypic variation for Type II and 24% for Type III resistance. Marker Xwmc17 is the closest marker to Fhb7AC for both types of resistance. Fhb1 and Fhb7AC were additive, and together explained 56% variation for Type II and 41% for Type III resistance and resulted in 66% reduction
in FHB severity and 84% reduction in deoxynivalenol (DON) content. Haplotype analysis of Sumai 3 parents revealed that Fhb7AC originated from Funo, an Italian cultivar. Fhb7AC has the potential to be used in improving wheat cultivars for both types of resistance. 相似文献
11.
12.
The R1 gene conferring race-specific resistance to Phytophthora infestans in potato is located on potato chromosome V. 总被引:5,自引:0,他引:5
Christiane Leonards-Schippers Werner Gieffers Francesco Salamini Christiane Gebhardt 《Molecular & general genetics : MGG》1992,233(1-2):278-283
Summary Late blight in potato is caused by the fungusPhytophthora infestans and can inflict severe damage on the potato crop. Resistance toP. infestans is either based on major dominantR genes conferring vertical, race-specific resistance or on minor genes inducing horizontal, unspecific resistance. A dihaploid potato line was identified which carried theR1 gene, conferring vertical resistance to allP. infestans races, with the exception of those homozygous for the recessive virulence allele of the locusV1. The F1 progeny of a cross between this resistant parent P(R1) and P(r), a line susceptible to all races, was analysed for segregation ofR1 and of restriction fragment length polymorphism (RFLP) markers distributed on the potato RFLP map comprising more than 300 loci. TheR1 locus was mapped to chromosome V in the interval between RFLP markers GP21 and GP179. The map position ofR1 was found to be very similar to the one ofRx2, a dominant locus inducing extreme resistance to potato virus X. 相似文献
13.
José Miguel Soriano María Luisa Domingo Elena Zuriaga Carlos Romero Tetyana Zhebentyayeva Albert G. Abbott María Luisa Badenes 《Molecular breeding : new strategies in plant improvement》2012,30(2):1017-1026
Sharka disease, caused by the plum pox virus (PPV), is one of the major limiting factors for stone fruit production in Europe and America. Attempts to stop the disease through the eradication of infected trees have been unsuccessful. Introgression of PPV resistance for crop improvement is therefore the most important goal in Prunus breeding programs. Due to time- and labour-consuming protocols, phenotyping for sharka is still the major bottleneck in the breeding pipeline. In this context, screening of seedlings at early stages of development and marker-assisted selection (MAS) provide the best solution for enhancing breeding efficiency. In this study, we generated 42 simple sequence repeat (SSR) markers from the peach genome assembly v1.0 and an apricot bacterial artificial chromosome clone identified in the physical map of the PPV resistance locus previously defined in apricot. Using a linkage mapping approach, we found SSR markers tightly linked to PPV resistance trait in all our progenies. Three SSR markers, PGS1.21 PGS1.23 and PGS1.24, showed allelic variants associated with PPV resistance with no recombinants in the crosses analysed. These markers unambiguously discriminated resistant from susceptible accessions in different genetic backgrounds. The results presented here are the first successful application of their use in MAS for breeding resistance in Prunus species. 相似文献
14.
15.
Greenbug, Schizaphis graminum (Rondani), represents the most important pest insect of sorghum, Sorghum bicolor (L.) Moench, in the Great Plains of the United States. Biotype E is the most widespread and dominant type not only in sorghum and wheat, Triticum aestivum L., fields, but also on many noncultivated grass species. This study was designed to determine sorghum accession PI 550610 resistance to greenbug biotype E, to map the resistance quantitative trait loci (QTLs) by using an established simple sequence repeat (SSR) linkage map and to identify SSR markers closely linked to the major resistance QTLs. In greenhouse screening tests, seedlings of PI 550610 showed strong resistance to the greenbug at a level similar to resistant accession PI550607. For QTL mapping, one F2 population containing 277 progeny and one population containing 233 F2:3 families derived from Westland A line x PI 550610 were used to genotype 132 polymorphic SSR markers and to phenotype seedling resistance to greenbug feeding. Phenotypic evaluation of sorghum seedling damage at 7, 12, 17, and 21 d postinfestation in the F2:3 families revealed that resistance variation was normally distributed. Single marker analysis indicated 16 SSRs spread over five chromosomes were significant for greenbug resistance. Composite interval and multiple interval mapping procedures indicated that a major QTL resided in the interval of 6.8 cM between SSR markers Xtxp358 and Xtxp289 on SBI-09. The results will be valuable in the development of new greenbug biotype E resistant sorghum cultivars and for the further characterization of major genes by map-based cloning. 相似文献
16.
17.
Szajko K Chrzanowska M Witek K Strzelczyk-Zyta D Zagórska H Gebhardt C Hennig J Marczewski W 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2008,116(2):297-303
Hypersensitive resistance (HR) is an efficient defense strategy in plants that restricts pathogen growth and can be activated
during host as well as non-host interactions. HR involves programmed cell death and manifests itself in tissue collapse at
the site of pathogen attack. A novel hypersensitivity gene, Ny-1, for resistance to Potato virus Y (PVY) was revealed in potato cultivar Rywal. This is the first gene that confers HR in potato plants both to common and necrotic
strains of PVY. The locus Ny-1 mapped on the short arm of potato chromosome IX, where various resistance genes are clustered in Solanaceous genomes. Expression
of HR was temperature-dependent in cv. Rywal. Strains PVYO and PVYN, including subgroups PVYNW and PVYNTN, were effectively localized when plants were grown at 20°C. At 28°C, plants were systemically infected but no symptoms were
observed. In field trials, PVY was restricted to the inoculated leaves and PVY-free tubers were produced. Therefore, the gene
Ny-1 can be useful for potato breeding as an alternative donor of PVY resistance, because it is efficacious in practice-like resistance
conferred by Ry genes. 相似文献
18.
A. Delprato B. Bonheur M.‐P. Algéo A. Murillo E. Dhawan L. Lu R. W. Williams W. E. Crusio 《Genes, Brain & Behavior》2018,17(7)
Aggression between male conspecifics is a complex social behavior that is likely modulated by multiple gene variants. In this study, the BXD recombinant inbred mouse strains (RIS) were used to map quantitative trait loci (QTLs) underlying behaviors associated with intermale aggression. Four hundred and fifty‐seven males from 55 strains (including the parentals) were observed at an age of 13 ± 1 week in a resident‐intruder test following 10 days of isolation. Attack latency was measured directly within a 10‐minute time period and the test was repeated 24 hours later. The variables we analyzed were the proportion of attacking males in a given strain as well as the attack latency (on days 1 and 2, and both days combined). On day 1, 29% of males attacked, and this increased to 37% on day 2. Large strain differences were obtained for all measures of aggression, indicating substantial heritability (intraclass correlations 0.10‐0.18). We identified a significant QTL on chromosome (Chr) 1 and suggestive QTLs on mouse Chrs 1 and 12 for both attack and latency variables. The significant Chr 1 locus maps to a gene‐sparse region between 82 and 88.5 Mb with the C57BL/6J allele increasing aggression and explaining about 18% of the variance. The most likely candidate gene modulating this trait is Htr2b which encodes the serotonin 2B receptor and has been implicated in aggressive and impulsive behavior in mice, humans and other species. 相似文献
19.
Ofere Emeriewen Klaus Richter Andrzej Kilian Elena Zini Magda-Viola Hanke Mickael Malnoy Andreas Peil 《Molecular breeding : new strategies in plant improvement》2014,34(2):407-419
Fire blight, caused by the Gram-negative bacterium Erwinia amylovora, is the most important bacterial disease affecting apple (Malus × domestica) and pear (Pyrus communis) production. The use of antibiotic treatment, though effective to some degree, is forbidden or strictly regulated in many European countries, and hence an alternative means of control is essential. The planting of fire blight-resistant cultivars seems to be a highly feasible strategy. In this study, we explored a segregating population derived from a cross between the wild apple species Malus fusca and the M. × domestica cultivar Idared. F1 progenies used for mapping were artificially inoculated with Erwinia amylovora strain Ea222_JKI at a concentration of 109 cfu/ml in three different years. The averages of percentage lesion length of all replicates of each genotype were used as numerical traits for statistical analysis. A Kruskal–Wallis analysis was used to determine marker–phenotype association and revealed a linkage group with Diversity Arrays Technology (DArT) markers significantly linked with fire blight. After locating the positions of the DArT markers on the Golden Delicious genome, simple sequence repeat (SSR) markers were developed from chromosome 10 to replace the DArT markers and to determine the quantitative trait locus (QTL) region. Multiple QTL mapping (MQM) revealed a strong QTL (Mfu10) on linkage group 10 of M. fusca explaining about 65.6 % of the phenotypic variation. This is the first report on a fire blight resistance QTL of M. fusca. 相似文献
20.
In the mouse, innate resistance or susceptibility to infection with a group of unrelated intracellular parasites which includes, Mycobacteria, Salmonella, and Leishmania is determined by the expression of a single dominant autosomal gene designated Bcg located on the proximal portion of chromosome 1. The gene is expressed at the level of the mature tissue macrophage and influences its capacity to restrict intracellular proliferation of the parasites. We have used restriction fragment length polymorphism analysis in segregating populations of inter- and intraspecific backcross mice and in recombinant inbred strains to position four new marker genes, transition protein 1 (Tp-1), desmin (Des), the alpha subunit of inhibin (Inha), and retinal S-antigen (Sag), in the vicinity of the host resistance locus, Bcg. The gene order for Tp-1, Des, Inha, and Sag was established in an eight-point testcross with respect to anchor loci previously assigned to that portion of mouse chromosome 1 and was found to be centromere-Fn-1-Tp-1-(Vil,Bcg)-Des-Inha-Akp-3-Acrg+ ++-Sag. Two of these new marker genes were found very tightly linked to Bcg: Des was located 0.3 +/- 0.3 cM distal from (Vil,Bcg) and 0.3 +/- 0.3 cM proximal to Inha. Tp-1 mapped 0.8 +/- 0.8 cM proximal and Sag 12.8 +/- 1.7 cM distal to (Vil,Bcg). Tp-1, Des, Inha, and Sag all fall within a large mouse chromosome 1 segment homologous with the telomeric region of the long arm of human chromosome 2 (2q). Our findings indicate that the two closest markers to the host resistance locus, Bcg, encode cytoskeleton-associated proteins which are capable of interaction with actin filaments. 相似文献