首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

MHC Class I molecules present antigenic peptides to cytotoxic T cells, which forms an integral part of the adaptive immune response. Peptides are bound within a groove formed by the MHC heavy chain. Previous approaches to MHC Class I-peptide binding prediction have largely concentrated on the peptide anchor residues located at the P2 and C-terminus positions.  相似文献   

2.

Background and aims

Although Helicobacter pylori is recognized as an extracellular infection bacterium, it can lead to an increase in the number of CD8+ T cells after infection. At present, the characteristics of H. pylori antigen-specific CD8+ T cells and the epitope response have not been elucidated. This study was focused on putative protective antigen UreB to detect specific CD8+ T-cell responses in vitro and screen for predominant response epitopes.

Methods

The PBMCs collected from H. pylori-infected individuals were stimulated by UreB peptide pools in vitro to identify the immunodominant CD8+ T-cell epitopes. Furthermore, their HLA restriction characteristics were detected accordingly by NGS. Finally, the relationship between immunodominant responses and appearance of gastric symptoms after H. pylori infection was conducted.

Results

UreB-specific CD8+ T-cell responses were detected in H. pylori-infected individuals. Three of UreB dominant epitopes (A-2 (UreB443–451: GVKPNMIIK), B-4 (UreB420–428: SEYVGSVEV), and C-1 (UreB5–13: SRKEYVSMY)) were firstly identified and mainly presented by HLA-A*1101, HLA-B*4001 and HLA-C*0702 alleles, respectively. C-1 responses were mostly occurred in H. pylori-infected subjects without gastric symptoms and may alleviate the degree of gastric inflammation.

Conclusions

The UreB dominant epitope-specific CD8+ T-cell response was closely related to the gastric symptoms after H. pylori infection, and the C-1 (UreB5-13) dominant peptides may be protective epitopes.  相似文献   

3.

Background

QuantiFERON-TB Gold In-Tube (QFT) is an IFNγ-release assay used in the diagnosis of Mycobacterium tuberculosis (MTB) infection. The risk of TB progression increases with the magnitude of the MTB-specific IFNγ-response. QFT reversion, also associated with low Tuberculin Skin Test responses, may therefore represent a transient immune response with control of M. tuberculosis infection. However, studies at the single cell level have suggested that the quality (polyfunctionality) of the T-cell response is more important than the quantity of cytokines produced.

Objective

To explore the quality and/or magnitude of mycobacteria-specific T-cell responses associated with QFT reversion and persistent QFT-positivity.

Methods

Multi-color flowcytometry on prospectively collected peripheral blood mononuclear cells was applied to assess mycobacteria-specific T-cell responses in 42 QFT positive Indian adolescents of whom 21 became QFT negative (reverters) within one year. Ten QFT consistent negatives were also included as controls.

Results

There was no difference in the qualitative PPD-specific CD4+ T-cell response between QFT consistent positives and reverters. However, compared with QFT consistent positives, reverters displayed lower absolute frequencies of polyfunctional (IFNγ+IL2+TNFα+) CD4+ T-cells at baseline, which were further reduced to the point where they were not different to QFT negative controls one year later. Moreover, absolute frequencies of these cells correlated well with the magnitude of the QFT-response.

Conclusion

Whereas specific polyfunctional CD4+ T-cells have been suggested to protect against TB progression, our data do not support that higher relative or absolute frequencies of PPD-specific polyfunctional CD4+ T-cells in peripheral blood can explain the reduced risk of TB progression observed in QFT reverters. On the contrary, absolute frequencies of these cells correlated with the QFT-response, suggesting that this readout reflects antigenic load.  相似文献   

4.

Background  

Modelling the interaction between potentially antigenic peptides and Major Histocompatibility Complex (MHC) molecules is a key step in identifying potential T-cell epitopes. For Class II MHC alleles, the binding groove is open at both ends, causing ambiguity in the positional alignment between the groove and peptide, as well as creating uncertainty as to what parts of the peptide interact with the MHC. Moreover, the antigenic peptides have variable lengths, making naive modelling methods difficult to apply. This paper introduces a kernel method that can handle variable length peptides effectively by quantifying similarities between peptide sequences and integrating these into the kernel.  相似文献   

5.
6.

Background  

Three networks of intercellular communication can be associated with cytokine secretion; one limited to cells of the immune system (immune cells), one limited to parenchymal cells of organs and tissues (body cells), and one involving interactions between immune and body cells (immune-body interface). These cytokine connections determine the inflammatory response to injury and subsequent healing as well as the biologic consequences of the adaptive immune response to antigens. We informatically probed the cytokine database to uncover the underlying network architecture of the three networks.  相似文献   

7.

Background  

Invariant natural killer T (iNKT) cells differ from other T cells by their hyperactive effector T-cell status, in addition to the expression of NK lineage receptors and semi-invariant T-cell receptors. It is generally agreed that the immune phenotype of iNKT cells is maintained by repeated activation in peripheral tissues although no explicit evidence for such iNKT cell activity in vivo has so far been reported.  相似文献   

8.

Background

Rituximab, an anti-CD20 monoclonal antibody, is reported to increase the T-cell-dependent infection risk. The current study was designed to investigate whether rituximab interferes with T-cell activation.

Patients and methods

Patients with non-Hodgkin lymphoma receiving 4–6 courses of 375?mg/m2 rituximab underwent detailed assessment of T-cell activation pre- and post-rituximab. A similar analysis assessed the in vitro effect of rituximab on T-cell activation in response to allogeneic dendritic cells (allo-DCs) and other stimuli.

Results

Patients receiving rituximab exhibited a significant decline in IL-2 and IFN-γ levels in peripheral blood, most prominent after repeated rituximab courses. Evaluation at 3?months after rituximab therapy showed restoration of inflammatory cytokine production. Similarly, in vitro stimulation of peripheral blood mononuclear cells in the presence of rituximab resulted in a significant decrease in T-cell activation markers, inflammatory cytokine production and proliferative capacity. These effects were also observed using B-cell-depleted T cells (CD3+CD25?CD19?) and were accompanied with disappearance of CD3+CD20dim T-cell population.

Conclusion

Rituximab administration results in transient, dose-dependent T-cell inactivation. This effect is obtained even in B-cell absence and may increase the infection risk.  相似文献   

9.

Background  

The binding between antigenic peptides (epitopes) and the MHC molecule is a key step in the cellular immune response. Accurate in silico prediction of epitope-MHC binding affinity can greatly expedite epitope screening by reducing costs and experimental effort.  相似文献   

10.

Background  

Gluten proteins can induce celiac disease (CD) in genetically susceptible individuals. In CD patients gluten-derived peptides are presented to the immune system, which leads to a CD4+ T-cell mediated immune response and inflammation of the small intestine. However, not all gluten proteins contain T-cell stimulatory epitopes. Gluten proteins are encoded by multigene loci present on chromosomes 1 and 6 of the three different genomes of hexaploid bread wheat (Triticum aestivum) (AABBDD).  相似文献   

11.

Background aims

Clinical-grade chimeric antigenic receptor (CAR)19 T cells are routinely manufactured by lentiviral/retroviral (LV/RV) transduction of an anti-CD3/CD28 activated T cells, which are then propagated in a culture medium supplemented with interleukin (IL)-2. The use of LV/RVs for T-cell modification represents a manufacturing challenge due to the complexity of the transduction approach and the necessity of thorough quality control.

Methods

We present here a significantly improved protocol for CAR19 T-cell manufacture that is based on the electroporation of peripheral blood mononuclear cells with plasmid DNA encoding the piggyBac transposon/transposase vectors and their cultivation in the presence of cytokines IL-4, IL-7 and IL-21.

Results

We found that activation of the CAR receptor by either its cognate ligand (i.e., CD19 expressed on the surface of B cells) or anti-CAR antibody, followed by cultivation in the presence of cytokines IL-4 and IL-7, enables strong and highly selective expansion of functional CAR19 T cells, resulting in >90% CAR+ T cells. Addition of cytokine IL-21 to the mixture of IL-4 and IL-7 supported development of immature CAR19 T cells with central memory and stem cell memory phenotypes and expressing very low amounts of inhibitory receptors PD-1, LAG-3 and TIM-3.

Conclusions

Our protocol provides a simple and cost-effective method for engineering high-quality T cells for adoptive therapies.  相似文献   

12.

Introduction  

Rheumatoid arthritis (RA) is characterized by synovial inflammation with local accumulation of mononuclear cells such as macrophages and lymphocytes. We previously demonstrated that intra-articular glucocorticoids decrease the synovial tissue (ST) T-cell population and therefore aimed to investigate whether this is mediated through modulation of apoptosis.  相似文献   

13.

Introduction

We used DR1 transgenic mice and covalently linked DR1 multimers to characterize analog-specific inhibitory T cells in collagen-induced arthritis (CIA). Because of the low numbers of antigen-specific T cells in wild-type mice, functional T-cell studies in autoimmune arthritis have been challenging. The use of T-cell receptor (TCR) transgenic mice has provided useful information, but such T cells may not represent the heterogeneous T-cell response that occurs in natural settings. Our focus was to develop tools to identify and characterize the population of immunoregulatory T cells induced in wild-type mice by an analog peptide of CII259-273, which contains amino acid substitutions at positions 263 (N) and 266 (D) (analog peptide A12).

Methods

DR1 multimers, developed by loading empty class II molecules with exogenous peptide, provide a method for visualizing antigen-specific T cells with flow cytometry. However, the low binding avidity of A12 for the major histocompatibility complex (MHC) made this strategy untenable. To overcome this problem, we generated DR1 multimers in which the analog peptide A12 was covalently linked, hoping that the low-avidity analog would occupy enough binding clefts to allow detection of the responsive T cells.

Results

Staining with the tetramer revealed that A12-specific T cells were readily detectable at 10 days after immunization. These CD4(+) T cells are a highly selective subset of the TCR repertoire and have a limited clonality. Analysis of cytokine expression showed that cells detected by tetramer (A12) expressed primarily suppressive cytokines (interleukin-4 (IL-4) and IL-10) in response to collagen, compared with control cells. Although they did not express Fox-p3, they were extremely effective in preventing and suppressing inflammatory arthritis.

Conclusions

In summary, our studies showed that the use of covalently linked multimers allows characterization of analog-specific T cells that are otherwise difficult to detect. The suppressive character of the analog-specific T-cell response suggests that these cells attenuate autoimmunity and differ significantly in phenotype from the inflammatory T cells predominantly found in arthritic joints. Such reagents will become powerful tools to study T-cell responses in RA patients in upcoming clinical trials.  相似文献   

14.

Introduction  

Systemic lupus erythematosus (SLE) is an autoimmune disease accompanied by a disturbed T-cell balance skewed towards effector T-cells, in particular Th17-cells. The novel cytokine interleukin-21 (IL-21) is suggested to be crucial for triggering T-cell responses towards IL-17 producing cells. Thus, we aimed to investigate the ability of T-cells to produce IL-21 and IL-17 in SLE patients.  相似文献   

15.
Fouchet D  Regoes R 《PloS one》2008,3(5):e2306

Background

Regulatory T cells are central actors in the maintenance of tolerance of self-antigens or allergens and in the regulation of the intensity of the immune response during infections by pathogens. An understanding of the network of the interaction between regulatory T cells, antigen presenting cells and effector T cells is starting to emerge. Dynamical systems analysis can help to understand the dynamical properties of an interaction network and can shed light on the different tasks that can be accomplished by a network.

Methodology and Principal Findings

We used a mathematical model to describe a interaction network of adaptive regulatory T cells, in which mature precursor T cells may differentiate into either adaptive regulatory T cells or effector T cells, depending on the activation state of the cell by which the antigen was presented. Using an equilibrium analysis of the mathematical model we show that, for some parameters, the network has two stable equilibrium states: one in which effector T cells are strongly regulated by regulatory T cells and another in which effector T cells are not regulated because the regulatory T cell population is vanishingly small. We then simulate different types of perturbations, such as the introduction of an antigen into a virgin system, and look at the state into which the system falls. We find that whether or not the interaction network switches from the regulated (tolerant) state to the unregulated state depends on the strength of the antigenic stimulus and the state from which the network has been perturbed.

Conclusion/Significance

Our findings suggest that the interaction network studied in this paper plays an essential part in generating and maintaining tolerance against allergens and self-antigens.  相似文献   

16.

Introduction  

Anti-tumor necrosis factor (TNF)-α biotherapies have considerably changed the treatment of rheumatoid arthritis (RA). However, serious infections are a major concern in patients with rheumatic diseases treated with anti-TNF-α. Little is known about viral, especially latent, infections in anti-TNF-α treatments. Infections by cytomegalovirus (CMV), a β-herpes virus, are frequent and induce a strong CD4pos T-cell immunity, which participates in the control of infection. We thus have chosen to analyze the CD4pos T-cell response to CMV antigens as a model of antiviral response in RA patients treated with anti-TNF-α. CD28 expression was evaluated.  相似文献   

17.

Background  

The major histocompatibility complex (MHC) molecule plays a central role in controlling the adaptive immune response to infections. MHC class I molecules present peptides derived from intracellular proteins to cytotoxic T cells, whereas MHC class II molecules stimulate cellular and humoral immunity through presentation of extracellularly derived peptides to helper T cells. Identification of which peptides will bind a given MHC molecule is thus of great importance for the understanding of host-pathogen interactions, and large efforts have been placed in developing algorithms capable of predicting this binding event.  相似文献   

18.

Introduction  

The Vβ12-transgenic mouse was previously generated to investigate the role of antigen-specific T cells in collagen-induced arthritis (CIA), an animal model for rheumatoid arthritis. This mouse expresses a transgenic collagen type II (CII)-specific T-cell receptor (TCR) β-chain and consequently displays an increased immunity to CII and increased susceptibility to CIA. However, while the transgenic Vβ12 chain recombines with endogenous α-chains, the frequency and distribution of CII-specific T cells in the Vβ12-transgenic mouse has not been determined. The aim of the present report was to establish a system enabling identification of CII-specific T cells in the Vβ12-transgenic mouse in order to determine to what extent the transgenic expression of the CII-specific β-chain would skew the response towards the immunodominant galactosylated T-cell epitope and to use this system to monitor these cells throughout development of CIA.  相似文献   

19.

Introduction  

Type II collagen is a DR4/DR1 restricted target of self-reactive T cells that sustain rheumatoid arthritis. The aim of the present study was to analyze the T-cell receptor repertoire at the onset of and at different phases in rheumatoid arthritis.  相似文献   

20.

Background

The identification of Mycobacterium tuberculosis vaccines that elicit a protective immune response in the lungs is important for the development of an effective vaccine against tuberculosis.

Methods and Principal Findings

In this study, a comparison of intranasal (i.n.) and subcutaneous (s.c.) vaccination with the BCG vaccine demonstrated that a single moderate dose delivered intranasally induced a stronger and sustained M. tuberculosis-specific T-cell response in lung parenchyma and cervical lymph nodes of BALB/c mice than vaccine delivered subcutaneously. Both BCG and a multicomponent subunit vaccine composed of nine M. tuberculosis recombinant proteins induced strong antigen-specific T-cell responses in various local and peripheral immune compartments. Among the nine recombinant proteins evaluated, the alanine proline rich antigen (Apa, Rv1860) was highly antigenic following i.n. BCG and immunogenic after vaccination with a combination of the nine recombinant antigens. The Apa-induced responses included induction of both type 1 and type 2 cytokines in the lungs as evaluated by ELISPOT and a multiplexed microsphere-based cytokine immunoassay. Of importance, i.n. subunit vaccination with Apa imparted significant protection in the lungs and spleen of mice against M. tuberculosis challenge. Despite observed differences in the frequencies and location of specific cytokine secreting T cells both BCG vaccination routes afforded comparable levels of protection in our study.

Conclusion and Significance

Overall, our findings support consideration and further evaluation of an intranasally targeted Apa-based vaccine to prevent tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号