首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Both beta-endorphin and ACTH have been found in high concentrations within the hypothalami of mammals and each neuropeptide has been proposed to play a physiological role in regulating body temperature. In an attempt to determine how these peptides may alter thermoregulation, small, microgram concentrations of beta-endorphin and ACTH were injected either into lateral cerebral ventricle (ICV) or directly into the preoptic-anterior hypothalamic area (POAH) or perfused into the POAH of unrestrained rats. Core (rectal) and surface (tail) temperatures were recorded before and after ICV and POAH injection of 1 microgram of beta-endorphin or ACTH or perfusion (10 ng/microL) of either neuropeptide. POAH perfusion of naloxone HCl following the neuropeptide perfusion was tested to determine the specificity of the temperature responses. Regardless of the route of central administration, beta-endorphin, in the concentrations used, consistently evoked a hyperthermic core temperature response, that could be antagonized by naloxone. Increased core temperatures may, in part, have been due to peripheral vasoconstriction, as suggested by the decreases seen in tail temperature. The same concentrations of ACTH failed to show any prominent core temperature changes. Results suggest that beta-endorphin is a more potent modulator than ACTH in altering core temperatures of unrestrained rats. Whether beta-endorphin and ACTH act physiologically in an antagonistic manner to maintain a constant body temperature remains to be proven.  相似文献   

2.
M Kavaliers 《Peptides》1982,3(4):679-685
Intraventricular administration of the opioid peptide, beta-endorphin to goldfish altered their body temperatures and activity levels. Low doses (0.5-5.0 pg g-1 body weight) of beta-endorphin significantly increased behaviorally selected body temperatures while higher doses (15 pg g-1) decreased the preferred temperatures selected in horizontal thermal gradients. There was a significant day-night rhythm in the extent of these effects. These thermoregulatory effects could be blocked and reversed by systemic administration of the opiate antagonist, naloxone, supporting mediation of the thermoregulatory effects at opioid receptors. In addition, administration of naloxone by itself significantly decreased preferred temperature. Removal of the pineal gland significantly increased the preferred temperatures selected by goldfish and eliminated the thermoregulatory effects of beta-endorphin administration in both the day and the night. The behavioral activity effects of beta-endorphin were dependent on the thermal conditions. In fish held at a constant temperature (20 degrees C) beta-endorphin caused a dose-dependent increase in activity, while in individuals held in thermal gradients administration of beta-endorphin had no effects on activity. In both situations naloxone caused a decrease in activity levels. Pinealectomy also eliminated the behavioral activating effects of beta-endorphin, though it had no apparent effects on the actions of naloxone. These results indicate that the pineal gland is involved in the mediation of the thermoregulatory and behavioral activating effects of beta-endorphin. Speculations are made as to the possible mechanisms of action of the pineal gland in mediating the effects of opioid neuropeptides.  相似文献   

3.
Changes in body temperature, oxygen uptake (VO2), heart rate (HR), sweating rate and plasma osmolarity were examined in 10 human subjects, performing four successive 30 min exercise-bouts of the same intensity (50% VO2 max) separated by 30 min rest periods. In spite of the rest intervals and replacement of body fluid loss there was a progressive increase in VO2. HR, rectal (Tre) and mean body (Tb) temperatures in consecutive exercise bouts. The thermoregulatory efficiency showed an increasing tendency, and a delay in the sweating response at the beginning of each exercise was shortened. It is concluded that a drift in metabolic and temperature responses to exercise, reported throughout a long-term continuous work, occurs also in the euhydrated subjects performing a prolonged intermittent exercise. It is not caused by an impaired thermoregulation during exercise but rather by insufficient restitution of metabolic processes during rest intervals.  相似文献   

4.
We have synthesized two peptides, VKGFY and cyclo(VKGFY) (referred to as pentarphin (PNT) and cyclopentarphin (cPNT), respectively), and found that both peptides at 1 nM concentration increased the adhesion and spreading of murine peritoneal macrophages as well as their bactericidal activity in vitro, as shown by phagocytosis of Salmonella typhimurium virulent strain 415. PNT administered intraperitoneally at dose 20 microg/mouse on day 7, 3, and 1 prior to the isolation of macrophages also enhanced the macrophage adhesion and spreading. The receptor binding characteristics of PNT and cPNT were examined using 125I-labeled PNT. The binding of labeled PNT to peritoneal macrophages was high-affinity (K(d)=3.6 nM) and saturable. It was not inhibited by naloxone (NAL) or [Met(5)]enkephalin ([Met(5)]ENK) but completely inhibited by unlabeled cPNT (K(i)=2.6 nM), immunorphin (IMN, decapeptide SLTCLVKGFY, corresponding to the IgG heavy-chain sequence 364-373) (K(i)=3.2 nM) or beta-endorphin (beta-END) (K(i)=2.8 nM). Thus, the effects of PNT and cPNT on macrophages are mediated by NAL-insensitive receptors common for PNT, cPNT, IMN, and beta-END.  相似文献   

5.
Studies on the in vitro interaction of beta-endorphin with different biomembrane preparations, measured in terms of Ca2+ induced chlorotetracycline (CTC) fluorescence alterations indicate that beta-endorphin causes release of calcium ion from both synaptosomal and erythrocyte membrane stores but not from rat brain mitochondria. It seems that the binding pattern or interaction of beta-endorphin with synaptosomes and erythrocytes are characteristically different from that of mitochondria, indicating some functional significance of this differential interaction.  相似文献   

6.
Common responses to hypoxia include decreased body temperature (Tb) and decreased energy metabolism. In this study, the effects of hypoxia and hypercapnia on Tb and metabolic oxygen consumption (V.O2) were investigated in Japanese quail (Coturnix japonica). When exposed to hypoxia (15, 13, 11 and 9% O2), Tb decreased only at 11% and 9% O2 compared to normoxia; quail were better able to maintain Tb during acute hypoxia after a one-week acclimation to 10% O2. V.O2 also decreased during hypoxia, but at 9% O2 this was partially offset by increased anaerobic metabolism. Tb and V.O2 responses to 9% O2 were exaggerated at lower ambient temperature (Ta), reflecting a decreased lower critical temperature during hypoxia. Conversely, hypoxia had little effect on Tb or V.O2 at higher Ta (36 °C). We conclude that Japanese quail respond to hypoxia in much the same way as mammals, by reducing both Tb and V.O2. No relationship was found between the magnitudes of decreases in Tb and V.O2 during 9% O2, however. Since metabolism is the source of heat generation, this suggests that Japanese quail increase thermolysis to reduce Tb. During hypercapnia (3, 6 and 9% CO2), Tb was reduced only at 9% CO2 while V.O2 was unchanged.  相似文献   

7.
The direct extra-adrenal actions of adrenocorticotropin 1-39 (ACTH) on electrical (E) and mechanical (M) characteristics of canine atrial tissues (AT) were investigated in in vitro experiments. One hundred twenty-five mU/ml of ACTH 1-39 significantly augmented the catecholamine induced positive inotropism as seen by shortening the time to peak tension (10.6%, p = 0.01) and increasing peak isometric tension (3.5 times, p = 0.001). Effects on the M responses were inhibited by propranolol (10(-6) M) (P). ACTH did not significantly modify action potential E or M parameters during cholinergic receptor antagonism or alpha-adrenergic receptor antagonism. Existence of a specific ACTH receptor was demonstrated using 125I radioiodinated ACTH 1-24. Significant binding of 125I-ACTH to AT was observed. Intracellular C-AMP levels were also measured in AT using radioimmunoassay. Tissues were exposed to 125mU/ml ACTH 1-39 plus combinations of norepinephrine (10(-6) M) (NE) and P. ACTH alone did not elevate intracellular C-AMP levels. NE increased C-AMP levels were not further increased by ACTH. Exposure to antagonist returned elevated C-AMP levels to control values. In conclusion (1) ACTH augments the NE induced M positive inotropism of the beta adrenergic receptor system. (2) ACTH specifically binds to AT and (3) ACTH does not utilize the C-AMP second messenger system.  相似文献   

8.
Comparatively little is known about the thermoregulatory effects of single and repeated administration of nicotine. Nicotine is a relatively fast acting drug that induces transient changes in core temperature (Tc) of rodents. The development of radio telemetry allows one to detect subtle and rapid changes in Tc that otherwise are difficult to measure with conventional colonic probe techniques. To this end, Tc and motor activity (MA) were monitored by radio telemetry in male and female Sprague-Dawley rats following five daily injections of saline or nicotine tartrate (0.5 mg/kg; sc). The first injection of saline led to a transient increase in Tc that was attributed to the handling and injection procedures. Rats dosed with nicotine for the first time were hypothermic for approximately 2 h after injection. The hypothermia was attributed to an impaired increase in Tc from handling and injection. A transient hyperthermic response began to develop with each successive injection of nicotine. After the fourth injection of nicotine, Tc of male rats increased by 0.5°C above controls; Tc of females increased by 0.25°C above controls after the fifth injection. MA also increased transiently with each injection of saline and nicotine. The MA response of females was significantly greater than the males for the second through fifth injections of nicotine. Overall, the thermoregulatory system develops sensitization with 4–5 repeated injections of nicotine. The mediation of a hyperthermic response to a systemically administered cholinergic agonist is a novel effect. It may aid in understanding the delayed hyperthermic response to organophosphate pesticides. The sensitization of the thermoregulatory system to nicotine may shed light on the neuropharmacological mechanisms of this drug.  相似文献   

9.
We investigated physiological effects of intramuscular injections of the following 3 long-acting neuroleptics commonly used in wildlife management: haloperidol (0.05, 0.1, and 0.5 mg/kg body mass), zuclopenthixol acetate (0.5, 1, and 5 mg/kg), and perphenazine enanthate (1, 3, and 10 mg/kg), in a rat model. Body temperature and cage activity were measured by intra-abdominal telemeters. Nociceptive responses were assessed by challenges to noxious heat and pressure. Haloperidol (0.5 mg/kg) produced a significant nocturnal hypothermia (p < 0.05) and decreased nighttime cage activity and food intake. Zuclopenthixol (5 mg/kg) significantly decreased nighttime body temperature and cage activity and, at 1 mg/kg and 5 mg/kg, significantly decreased food intake 5-17 h after injection (p < 0.05). Perphenazine (10 mg/kg) significantly decreased nighttime body temperature and cage activity and, at all doses, significantly decreased food intake 5-17 h after injection (p < 0.05). Significant analgesic activity was evident in rats given 5 mg/kg zuclopenthixol up to 40 h after injection, and 10 mg/kg perphenazine from 48 to 96 h after injection (p < 0.0001). Zuclopenthixol (5 mg/kg) and perphenazine (10 mg/kg) had significant antihyperalgesic activities at 16 h postinjection and 24-48 h postinjection, respectively (p < 0.0001). Haloperidol had no significant antinociceptive activity at doses tested. Motor function was impaired in rats given 0.5 mg/kg haloperidol, 5 mg/kg zuclopenthixol and 10 mg/kg perphenazine. Effects of long-acting neuroleptics on body temperature, feeding, and activity were short-lasted and should not preclude their use in wildlife. Antinociceptive actions were longer-lasting, but were nonspecific, and we recommend additional analgesics for painful procedures during wildlife management.  相似文献   

10.
This study describes effects of various peptides, neurotransmitters and cyclic nucleotides on brain polyphosphoinositide metabolism in vitro. The interconversion of the polyanionic inositol phospholipids was studied by incubation of a lysed crude mitochondrial/synaptosomal fraction with [gamma-32P]-ATP. The reference peptide ACTH1-24 stimulated the formation of radiolabelled phosphatidylinositol 4,5-diphosphate (TPI) and inhibited that of phosphatidic acid (PA). Substance P inhibited both TPI and PA labelling, whereas beta-endorphin inhibited that of PA without any effect on TPI. Morphine had no effect at any concentration tested, whereas high concentrations of naloxone inhibited the labelling of both PA and TPI. Naloxone did not counteract the effects of ACTH1-24. The other peptides tested (lysine 8-vasopressin and angiotensin II) were without any effect. Under the conditions used, adrenaline, noradrenaline and acetylcholine did not affect the labelling of the (poly)phosphoinositides. Both dopamine and serotonin, however, dose-dependently inhibited the formation of radiolabelled TPI and PA. Low concentrations of cAMP stimulated TPI, but higher concentrations had an overall inhibitory effect on the labelling of TPI, PA and especially phosphatidylinositol 4-phosphate (DPI). The cyclic nucleotide did not mediate or counteract the effects of ACTH, and cGMP was without any effect. These results are discussed in the light of current ideas on the mechanism of action of neuropeptides.  相似文献   

11.
Within two weeks, hypophysectomy induced in rats a striking decrease in the level of circulating ACTH (the concentration of which was at the limit of sensitivity of our assay system), coupled with a net reduction in the plasma corticosterone concentration and an evident adrenal atrophy. Zona fasciculata, the main producer of glucocorticoids, was decreased in volume, due to a lowering in both the number and average volume of its parenchymal cells. Subcutaneous ACTH infusion (0.1 pmol·min-1), administered during the last week following hypophysectomy, restored the normal blood level of ACTH and completely reversed all effects of hypophysectomy on the adrenals. Subcutaneous infusion for one week with -helical-CRH or corticotropin-inhibiting peptide (1 nmol·min-1), which are competitive inhibitors of CRH and ACTH, evoked a further significant lowering of plasma corticosterone concentration and markedly enhanced adrenal atrophy in hypophysectomized rats. These findings strongly suggest that an extrahypothalamic pituitary CRH/ACTH system may be involved in the maintenance of the growth and steroidogenic secretory activity of the rat adrenal cortex.  相似文献   

12.
S Yehuda  P Sheleff 《Peptides》1985,6(2):189-192
The neuropharmacological basis for d-amphetamine induced paradoxical behavioral thermoregulation remains unclear. This study examined thermoregulatory behavior of rats in a runway device that housed a heat source at one end and in which locomotion along the length of the runway could be observed. Sprague Dawley rats were pretreated with IP injections of saline, beta-endorphin, MIF-1, or alpha-MSH, with a repeat injection after 30 min. In a second experiment, d-amphetamine was administered as the repeat drug for all Ss. The results showed clear differences for heat-source-on vs. heat-source off. All peptides induced hypermotility, although no differentiated effects for the peptides on d-amphetamine induced paradoxical behavioral thermoregulation were found. These findings are discussed in light of the theoretical possibilities that: (a) a ceiling effect exists; (b) there are separate control systems for maintaining body temperature and another for behavioral thermoregulatory responses, and (c) other neurotransmitters may be involved in such induced paradoxical behavioral thermoregulation.  相似文献   

13.
Norepinephrine (NE)-induced contractile responses were less in aortic strips from SH compared to WKY rats. ACTH 1-24 potentiated NE responses in both SH and WKY aortic strips. This effect was more potent in SH aortic strips. NE-induced contractions in SH aortic strips were less sensitive to changes in external Ca2+ levels than were those of WKY aortic strips. ACTH 1-24 did not potentiate NE responses under low external Ca2+ conditions in SH aortic strips or under high external Ca2+ conditions in WKY aortic strips. The greater sensitivity of NE responses following ACTH 1-24 in SH aortic strips may imply that this peptide is modulating a mechanism related to an impaired contractility and that Ca2+ plays a key role in the observed effects.  相似文献   

14.
In mammals, nocturnal light pulses (NLP) have been demonstrated to affect physiology and behavior. However, the impact of NLP as a stressor has been less broadly examined. The purpose of this study was to examine the effect of NLP (three 15 min 450 lux light pulses) during each scotophase on both thermoregulation and endocrine stress responses under short-day (SD; 8L:16D) acclimation. Voles were acclimated to either SD (SD voles) or SD+NLP (NLP voles). Resistance to cold was estimated by measurements of body temperature (Tb) during cold exposure (5°C). Daily rhythms of energy expenditure (calculated from oxygen consumption), urine production, and urinary adrenaline and serum cortisol levels were measured. Tb values of SD voles were generally unaffected by the cold stimulus, whereas in NLP voles, resistance to cold was markedly lowered. While SD- and NLP voles showed similar ultradian characteristics in energy expenditure with a period of 3.5 h, mean energy expenditure levels were lowest for voles exposed to NLP-treatment. In SD voles, but not in NLP voles, urine production rates showed clear time variations and were consistently highest for SD voles, with significant differences during the scotophase. Both mean total urinary adrenaline and serum cortisol levels were significantly elevated in NLP-treated voles compared with the control group. Taken together, the results suggest that NLP negatively affects winter acclimatization of thermoregulatory mechanisms of M. socialis, probably by mimicking summer acclimatization, and consequently the thermoregulatory mechanisms respond inappropriately to ambient conditions. One important finding of this study is that NLP may act as a stressor and correspondingly impose a major threat to the physiological homeostasis of M. socialis, such that over-winter survival might be compromised.  相似文献   

15.
Tekes K  Hantos M  Csaba G 《Life sciences》2004,74(16):1993-1997
In earlier experiments endorphin treatment of newborn rats caused the decrease of brain serotonin content, increasing aggressivity, enhanced sexual activity of females and changes in the binding capacity of uterine estrogen receptors at adult age, however nociceptin content of the cerebrospinal fluid was not changed. In the present experiment neonatal treatment of male and female rats was done with a single dose of 3 microg beta-endorphin and in five months old rats the level of nociceptin antagonist nocistatin was determined by radioimmunoassay in the cerebrospinal fluid. In both genders the amount of nocistatin was one magnitude higher in the endorphin treated groups. There was also a significant difference between the male and female nocistatin level in the treated and non-treated groups alike, with the advantage of females. The results call attention to the possibility of influencing pain-tolerance for life, by the pain-provoked endorphin levels during delivery.  相似文献   

16.
17.
Rabbit antibody was prepared against NADPH-cytochrome c reductase of Tetrahymena microsomes. When examined by the Ouchterlony double diffusion test, anti-NADPH-cytochrome c reductase immunoglobulin formed a single precipitation line with Tetrahymena reductase but not rat liver one. The antibody inhibited the NADPH-cytochrome c reductase activity of Tetrahymena microsomes, but it did not affect either NADH-ferricyanide or NADH-cytochrome c reductase activity of Tetrahymena microsomes. The NADPH-dependent desaturation of stearoyl-CoA in Tetrahymena microsomes was inhibited by anti-reductase immunoglobuline, while the NADH-dependent desaturation was affected by neither anti-reductase nor control immunoglobuline. It was suggested that the temperature associated-alteration of NADPH-cytochrome c reductase activities would be important for regulation of microsomal NADPH-dependent desaturase activities in Tetrahymena which contains no cytochrome P-450.  相似文献   

18.
The biosynthesis of pro-opiomelanocortin (POMC) and related peptides by the intermediate lobe of the pituitary gland was studied in the frog Rana ridibunda using the pulse-chase technique. Analysis of radioactive proteins by dodecyl sulfate polyacrylamide gel electrophoresis showed that during pulse incubations a 36,000 dalton (36K) glycosylated prohormone was synthesized. It disappeared slowly during chase incubations, giving rise to another glycosylated protein (Mr 18K), identified as the N-terminal fragment of POMC. This latter protein was secreted to the incubation medium. High performance liquid chromatography analysis of peptides synthesized during chase incubations revealed the biosynthesis of two peptides related to gamma-MSH, three peptides related to alpha-MSH, one endorphin-related and one CLIP-related peptides. These newly synthesized peptides were slowly secreted to the incubation medium. Among the alpha-MSH related peptides, only the des-N alpha-acetyl alpha-MSH form of the peptide was found to be present within the cells, in contrast to the incubation medium where the presence of des-N alpha-acetyl alpha-MSH and a modified alpha-MSH was demonstrated.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号