首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
癌症的发生发展与机体内基因的改变有密切联系,在临床上表现为症状或检测指标的异常.通过挖掘分析临床表现与基因改变之间的关系,可为癌症早期诊断和精准治疗提供临床决策支持.从文献数据出发,利用结论性数据挖掘基因与临床表现的关系具有重要意义.本文提出一种基于医学主题词(Medical Subject Headings,MeSH)的生物医学实体关系挖掘方法.该方法利用PubMed中提供的文献信息,借用向量空间模型思想,使用MeSH主题词矢量表达待研究实体,引入文献相互引用因素对结果进行修正,将关系挖掘转化为矢量间的数学运算,实现定量分析.本文将该方法应用于结直肠癌临床表现和基因关系的研究中,得到与结直肠癌相关的203个基因和对应的临床-基因462个关系.通过结合使用基因功能和通路分析工具g:Profiler和KEGG等,对结果进行分析验证.结果表明,基于MeSH主题词的文献挖掘方法,避免传统“共现”方法对发现潜在关系的限制和复杂语义分析带来的大量计算,为生物实体之间潜在关系的挖掘提供一种新的思路和方法.  相似文献   

2.
3.
ABSTRACT: BACKGROUND: PubMed is a free web literature search service that contains almost 21 millions of abstracts and publications with almost 5 million user queries daily. The purposes of the study were to compare trends in PubMed-indexed cancer and biomedical publications from Egypt to that of the world and to predict future publication volumes. METHODS: The PubMed was searched for the biomedical publications between 1991 and 2010 (publications dates). Affiliation was then limited to Egypt. Further limitation was applied to cancer, human and animal publications. Poisson regression model was used for prediction of future number of publications between 2011 and 2020. RESULTS: Cancer publications contributed 23% to biomedical publications both for Egypt and the world. Egyptian biomedical and cancer publications contributed about 0.13% to their world counterparts. This contribution was more than doubled over the study period. Egyptian and world's publications increased from year to year with rapid rise starting the year 2003. Egyptian as well as world's human cancer publications showed the highest increases. Egyptian publications had some peculiarities; they showed some drop at the years 1994 and 2002 and apart from the decline in the animal: human ratio with time, all Egyptian publications in the period 1991-2000 were significantly more than those in 2001-2010 (P<0.05 for all). By 2020, Egyptian biomedical and cancer publications will increase by 158.7% and 280% relative to 2010 to constitute 0.34% and 0.17% of total PubMed publications, respectively. CONCLUSIONS: The Egyptian contribution to world's biomedical and cancer publications needs significant improvements through research strategic planning, setting national research priorities, adequate funding and researchers' training.  相似文献   

4.
MiSearch is an adaptive biomedical literature search tool that ranks citations based on a statistical model for the likelihood that a user will choose to view them. Citation selections are automatically acquired during browsing and used to dynamically update a likelihood model that includes authorship, journal and PubMed indexing information. The user can optionally elect to include or exclude specific features and vary the importance of timeliness in the ranking. AVAILABILITY: http://misearch.ncibi.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

5.
This paper objects to the arising problems when fitting graphical chain models to multidimensional data sets like the one at our disposal: the so-called graduates study. These models seem adequate, because the analysis of dependencies and associations among the variables of interest requires a multivariate statistical device that is rich enough to capture not only direct, but also indirect associations. Since even for a moderate number of variables the graphical chain model space is vast appropriate strategies for fitting graphical chain models are needed. Here, a data-driven selection strategy is discussed in detail.  相似文献   

6.
FACTA is a text search engine for MEDLINE abstracts, which is designed particularly to help users browse biomedical concepts (e.g. genes/proteins, diseases, enzymes and chemical compounds) appearing in the documents retrieved by the query. The concepts are presented to the user in a tabular format and ranked based on the co-occurrence statistics. Unlike existing systems that provide similar functionality, FACTA pre-indexes not only the words but also the concepts mentioned in the documents, which enables the user to issue a flexible query (e.g. free keywords or Boolean combinations of keywords/concepts) and receive the results immediately even when the number of the documents that match the query is very large. The user can also view snippets from MEDLINE to get textual evidence of associations between the query terms and the concepts. The concept IDs and their names/synonyms for building the indexes were collected from several biomedical databases and thesauri, such as UniProt, BioThesaurus, UMLS, KEGG and DrugBank. AVAILABILITY: The system is available at http://www.nactem.ac.uk/software/facta/  相似文献   

7.
MOTIVATION: Contrasts are useful conceptual vehicles for learning processes and exploratory research of the unknown. For example, contrastive information between proteins can reveal what similarities, divergences and relations there are of the two proteins, leading to invaluable insights for better understanding about the proteins. Such contrastive information are found to be reported in the biomedical literature. However, there have been no reported attempts in current biomedical text mining work that systematically extract and present such useful contrastive information from the literature for exploitation. RESULTS: Our BioContrasts system extracts protein-protein contrastive information from MEDLINE abstracts and presents the information to biologists in a web-application for exploitation. Contrastive information are identified in the text abstracts with contrastive negation patterns such as 'A but not B'. A total of 799 169 pairs of contrastive expressions were successfully extracted from 2.5 million MEDLINE abstracts. Using grounding of contrastive protein names to Swiss-Prot entries, we were able to produce 41 471 pieces of contrasts between Swiss-Prot protein entries. These contrastive pieces of information are then presented via a user-friendly interactive web portal that can be exploited for applications such as the refinement of biological pathways. AVAILABILITY: BioContrasts can be accessed at http://biocontrasts.i2r.a-star.edu.sg. It is also mirrored at http://biocontrasts.biopathway.org. SUPPLEMENTARY INFORMATION: Supplementary materials are available at Bioinformatics online.  相似文献   

8.
Protein-protein interactions (PPIs) are the basis of biological functions. Knowledge of the interactions of a protein can help understand its molecular function and its association with different biological processes and pathways. Several publicly available databases provide comprehensive information about individual proteins, such as their sequence, structure, and function. There also exist databases that are built exclusively to provide PPIs by curating them from published literature. The information provided in these web resources is protein-centric, and not PPI-centric. The PPIs are typically provided as lists of interactions of a given gene with links to interacting partners; they do not present a comprehensive view of the nature of both the proteins involved in the interactions. A web database that allows search and retrieval based on biomedical characteristics of PPIs is lacking, and is needed. We present Wiki-Pi (read Wiki-π), a web-based interface to a database of human PPIs, which allows users to retrieve interactions by their biomedical attributes such as their association to diseases, pathways, drugs and biological functions. Each retrieved PPI is shown with annotations of both of the participant proteins side-by-side, creating a basis to hypothesize the biological function facilitated by the interaction. Conceptually, it is a search engine for PPIs analogous to PubMed for scientific literature. Its usefulness in generating novel scientific hypotheses is demonstrated through the study of IGSF21, a little-known gene that was recently identified to be associated with diabetic retinopathy. Using Wiki-Pi, we infer that its association to diabetic retinopathy may be mediated through its interactions with the genes HSPB1, KRAS, TMSB4X and DGKD, and that it may be involved in cellular response to external stimuli, cytoskeletal organization and regulation of molecular activity. The website also provides a wiki-like capability allowing users to describe or discuss an interaction. Wiki-Pi is available publicly and freely at http://severus.dbmi.pitt.edu/wiki-pi/.  相似文献   

9.
Text mining can support the interpretation of the enormous quantity of textual data produced in biomedical field. Recent developments in biomedical text mining include advances in the reliability of the recognition of named entities (NEs) such as specific genes and proteins, as well as movement toward richer representations of the associations of NEs. We argue that this shift in representation should be accompanied by the adoption of a more detailed model of the relations holding between NEs and other relevant domain terms. As a step toward this goal, we study NE-term relations with the aim of defining a detailed, broadly applicable set of relation types based on accepted domain standard concepts for use in corpus annotation and domain information extraction approaches.  相似文献   

10.
MOTIVATION: Protein-protein interactions play critical roles in biological processes, and many biologists try to find or to predict crucial information concerning these interactions. Before verifying interactions in biological laboratory work, validating them from previous research is necessary. Although many efforts have been made to create databases that store verified information in a structured form, much interaction information still remains as unstructured text. As the amount of new publications has increased rapidly, a large amount of research has sought to extract interactions from the text automatically. However, there remain various difficulties associated with the process of applying automatically generated results into manually annotated databases. For interactions that are not found in manually stored databases, researchers attempt to search for abstracts or full papers. RESULTS: As a result of a search for two proteins, PubMed frequently returns hundreds of abstracts. In this paper, a method is introduced that validates protein-protein interactions from PubMed abstracts. A query is generated from two given proteins automatically and abstracts are then collected from PubMed. Following this, target proteins and their synonyms are recognized and their interaction information is extracted from the collection. It was found that 67.37% of the interactions from DIP-PPI corpus were found from the PubMed abstracts and 87.37% of interactions were found from the given full texts. AVAILABILITY: Contact authors.  相似文献   

11.
Literature search is a process in which external developers provide alternative representations for efficient data mining of biomedical literature such as ranking search results, displaying summarized knowledge of semantics and clustering results into topics. In clustering search results, prominent vocabularies, such as GO (Gene Ontology), MeSH(Medical Subject Headings) and frequent terms extracted from retrieved PubMed abstracts have been used as topics for grouping. In this study, we have proposed FNeTD (Frequent Nearer Terms of the Domain) method for PubMed abstracts clustering. This is achieved through a two-step process viz; i) identifying frequent words or phrases in the abstracts through the frequent multi-word extraction algorithm and ii) identifying nearer terms of the domain from the extracted frequent phrases using the nearest neighbors search. The efficiency of the clustering of PubMed abstracts using nearer terms of the domain was measured using F-score. The present study suggests that nearer terms of the domain can be used for clustering the search results.  相似文献   

12.
In pursuit of a better updated source including 'omics' information for breast cancer, Breast Cancer Database (BCDB) has been developed to provide the researcher with the quick overview of the Breast cancer disease and other relevant information. This database comprises of myriad of information about genes involved in breast cancer, its functions and drug molecules which are currently being used in the treatment of breast cancer. The data available in BCDB is retrieved from the biomedical research literature. It facilitates the user to search information on gene, its location in chromosome, functions and its importance in cancer diseases. Broadly, this can be queried by giving gene name, protein name and drug name. This database is platform independent, user friendly and freely accessible through internet. The data present in BCDB is directly linked to other on-line resources such as NCBI, PDB and PubMed. Hence, it can act as a complete web resource comprising gene sequences, drug structures and literature information related to breast cancer, which is not available in any other breast cancer database. AVAILABILITY: The database is freely available at http://122.165.25.137/bioinfo/breastcancerdb/  相似文献   

13.
Virtual reality is a powerful tool with the ability to immerse a user within a completely external environment. This immersion is particularly useful when visualizing and analyzing interactions between small organic molecules, molecular inorganic complexes, and biomolecular systems such as redox proteins and enzymes. A common tool used in the biomedical community to analyze such interactions is the Adaptive Poisson‐Boltzmann Solver (APBS) software, which was developed to solve the equations of continuum electrostatics for large biomolecular assemblages. Numerous applications exist for using APBS in the biomedical community including analysis of protein ligand interactions and APBS has enjoyed widespread adoption throughout the biomedical community. Currently, typical use of the full APBS toolset is completed via the command line followed by visualization using a variety of two‐dimensional external molecular visualization software. This process has inherent limitations: visualization of three‐dimensional objects using a two‐dimensional interface masks important information within the depth component. Herein, we have developed a single application, UnityMol‐APBS, that provides a dual experience where users can utilize the full range of the APBS toolset, without the use of a command line interface, by use of a simple graphical user interface (GUI) for either a standard desktop or immersive virtual reality experience.  相似文献   

14.
Recent years have seen a huge increase in the amount of biomedical information that is available in electronic format. Consequently, for biomedical researchers wishing to relate their experimental results to relevant data lurking somewhere within this expanding universe of on-line information, the ability to access and navigate biomedical information sources in an efficient manner has become increasingly important. Natural language and text processing techniques can facilitate this task by making the information contained in textual resources such as MEDLINE more readily accessible and amenable to computational processing. Names of biological entities such as genes and proteins provide critical links between different biomedical information sources and researchers' experimental data. Therefore, automatic identification and classification of these terms in text is an essential capability of any natural language processing system aimed at managing the wealth of biomedical information that is available electronically. To support term recognition in the biomedical domain, we have developed Termino, a large-scale terminological resource for text processing applications, which has two main components: first, a database into which very large numbers of terms can be loaded from resources such as UMLS, and stored together with various kinds of relevant information; second, a finite state recognizer, for fast and efficient identification and mark-up of terms within text. Since many biomedical applications require this functionality, we have made Termino available to the community as a web service, which allows for its integration into larger applications as a remotely located component, accessed through a standardized interface over the web.  相似文献   

15.
16.
Associations among biological objects such as genes, proteins, and drugs can be discovered automatically from the scientific literature. TransMiner is a system for finding associations among objects by mining the Medline database of the scientific literature. The direct associations among the objects are discovered based on the principle of co-occurrence in the form of an association graph. The principle of transitive closure is applied to the association graph to find potential transitive associations. The potential transitive associations that are indeed direct are discovered by iterative retrieval and mining of the Medline documents. Those associations that are not found explicitly in the entire Medline database are transitive associations and are the candidates for hypothesis generation. The transitive associations were ranked based on the sum of weight of terms that cooccur with both the objects. The direct and transitive associations are visualized using a graph visualization applet. TransMiner was tested by finding associations among 56 breast cancer genes and among 24 objects in the calpain signal transduction pathway. TransMiner was also used to rediscover associations between magnesium and migraine.  相似文献   

17.
18.
Interest in information extraction from the biomedical literature is motivated by the need to speed up the creation of structured databases representing the latest scientific knowledge about specific objects, such as proteins and genes. This paper addresses the issue of a lack of standard definition of the problem of protein name tagging. We describe the lessons learned in developing a set of guidelines and present the first set of inter-coder results, viewed as an upper bound on system performance. Problems coders face include: (a) the ambiguity of names that can refer to either genes or proteins; (b) the difficulty of getting the exact extents of long protein names; and (c) the complexity of the guidelines. These problems have been addressed in two ways: (a) defining the tagging targets as protein named entities used in the literature to describe proteins or protein-associated or -related objects, such as domains, pathways, expression or genes, and (b) using two types of tags, protein tags and long-form tags, with the latter being used to optionally extend the boundaries of the protein tag when the name boundary is difficult to determine. Inter-coder consistency across three annotators on protein tags on 300 MEDLINE abstracts is 0.868 F-measure. The guidelines and annotated datasets, along with automatic tools, are available for research use.  相似文献   

19.
We report the production and availability of over 7000 fully sequence verified plasmid ORF clones representing over 3400 unique human genes. These ORF clones were derived using the human MGC collection as template and were produced in two formats: with and without stop codons. Thus, this collection supports the production of either native protein or proteins with fusion tags added to either or both ends. The template clones used to generate this collection were enriched in three ways. First, gene redundancy was removed. Second, clones were selected to represent the best available GenBank reference sequence. Finally, a literature-based software tool was used to evaluate the list of target genes to ensure that it broadly reflected biomedical research interests. The target gene list was compared with 4000 human diseases and over 8500 biological and chemical MeSH classes in approximately 15 Million publications recorded in PubMed at the time of analysis. The outcome of this analysis revealed that relative to the genome and the MGC collection, this collection is enriched for the presence of genes with published associations with a wide range of diseases and biomedical terms without displaying a particular bias towards any single disease or concept. Thus, this collection is likely to be a powerful resource for researchers who wish to study protein function in a set of genes with documented biomedical significance.  相似文献   

20.

Background  

Frequently, several alternative names are in use for biological objects such as genes and proteins. Applications like manual literature search, automated text-mining, named entity identification, gene/protein annotation, and linking of knowledge from different information sources require the knowledge of all used names referring to a given gene or protein. Various organism-specific or general public databases aim at organizing knowledge about genes and proteins. These databases can be used for deriving gene and protein name dictionaries. So far, little is known about the differences between databases in terms of size, ambiguities and overlap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号