首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 743 毫秒
1.
Sensitivity Analysis of Reactive Ecological Dynamics   总被引:1,自引:0,他引:1  
Ecological systems with asymptotically stable equilibria may exhibit significant transient dynamics following perturbations. In some cases, these transient dynamics include the possibility of excursions away from the equilibrium before the eventual return; systems that exhibit such amplification of perturbations are called reactive. Reactivity is a common property of ecological systems, and the amplification can be large and long-lasting. The transient response of a reactive ecosystem depends on the parameters of the underlying model. To investigate this dependence, we develop sensitivity analyses for indices of transient dynamics (reactivity, the amplification envelope, and the optimal perturbation) in both continuous- and discrete-time models written in matrix form. The sensitivity calculations require expressions, some of them new, for the derivatives of equilibria, eigenvalues, singular values, and singular vectors, obtained using matrix calculus. Sensitivity analysis provides a quantitative framework for investigating the mechanisms leading to transient growth. We apply the methodology to a predator-prey model and a size-structured food web model. The results suggest predator-driven and prey-driven mechanisms for transient amplification resulting from multispecies interactions.  相似文献   

2.
Understanding actual and potential selection on traits of invasive species requires an assessment of the sources of variation in demographic rates. While some of this variation is assignable to environmental, biotic or historical factors, unexplained demographic variation also may play an important role. Even when sites and populations are chosen as replicates, the residual variation in demographic rates can lead to unexplained divergence of asymptotic and transient population dynamics. This kind of divergence could be important for understanding long- and short- term differences among populations of invasive species, but little is known about it. We investigated the demography of a small invasive tree Psidium cattleianum Sabine in the rainforest of Hawaiʻi at four sites chosen for their ecological similarity. Specifically, we parameterized and analyzed integral projection models (IPM) to investigate projected variability among replicate populations in: (1) total population size and annual per capita population growth rate during the transient and asymptotic periods; (2) population structure initially and asymptotically; (3) three key parameters that characterize transient dynamics (the weighted distance of the structure at each time step from the asymptotic structure, the strength of the sub-dominant relative to the dominant dynamics, and inherent cyclicity in the subdominant); and (4) proportional sensitivity (elasticity) of population growth rates (both asymptotic and transient) to perturbations of various components of the life cycle. We found substantial variability among replicate populations in all these aspects of the dynamics. We discuss potential consequences of variability across ecologically similar sites for management and evolutionary ecology in the exotic range of invasive species.  相似文献   

3.
In density-independent models, the population growth rate lambda measures population performance, and the perturbation analysis of lambda (its sensitivity and elasticity) plays an important role in demography. In density-dependent models, the invasion exponent lambdaI replaces lambda as a measure of population performance. The perturbation analysis of lambdaI reveals the effects of environmental changes and management actions, gives the direction and intensity of density-dependent natural selection on life history traits, and permits calculation of the sampling variance of the invasion exponent. Because density-dependent models require more data than density-independent models, it is tempting to look for substitutes for the invasion exponent, the sensitivity and elasticity of which can be calculated from a density-independent model. Here we examine the accuracy of two such substitutes: the dominant eigenvalue of the projection matrix evaluated at equilibrium (An) and the dominant eigenvalue of the matrix averaged over the attractor (A). Using a two-stage model that represents a wide range of life history types, we find that the elasticities of An or A often agree to within less than 5% error with those of the invasion exponent, even when population dynamics are chaotic. The exceptions are for semelparous life histories, especially when density-dependence affects fertility. This suggests that the elasticity analysis of density-independent models near equilibrium, or averaged over the attractor, provides useful information about the elasticity of the invasion exponent in density-dependent models.  相似文献   

4.
Quantification and understanding of demographic variation across intra- and inter-annual temporal scales can benefit from the development of theoretical models of evolution and applied conservation of species. We used long-term survey data for northern bobwhites (Colinus virginianus) collected at the northern and southern extent of its geographic range to develop matrix population models which would allow investigation of intra- and inter-annual patterns in bobwhite population dynamics. We first evaluated intra-annual patterns in the importance of a seasonal demographic rate to asymptotic population growth rate with prospective perturbation analysis (elasticity analysis). We then conducted retrospective analysis (life table response experiments) of inter-annual patterns in the contribution of observed changes in demography to the observed change in population growth rate. Survival in the earliest age class during the nonbreeding season had the greatest potential influence in both the northern and southern populations. Examination of inter-annual variation in demography indicated that variation in nonbreeding season survival in the earliest age class contributed the most to observed changes in population growth rate in the northern population. In contrast, changes in fertility in the earliest age class in the southern population had the greatest influence on changes in population growth rate. Prospective elasticity analyses highlight the similarities in bobwhite demography throughout different parts of its geographic range, while retrospective life table response experiments revealed important patterns in the temporal differences of bobwhite life history at the northern and southern extent of its geographic range.  相似文献   

5.
In population biology, elasticity is a measure of the importance of a demographic rate on population growth. A relatively small amount of stochasticity can substantially impact the dynamics of a population whose growth is a function of deterministic and stochastic processes. Analyses of natural populations frequently neglect the latter. Even in a population that fluctuates substantially with time, the results of a deterministic perturbation analysis correlated strongly with results of a perturbation analysis of the long-run stochastic growth rate. Population growth was, however, not uniformly sensitive to demographic rates across different environmental conditions. The overall correlation between deterministic and stochastic perturbation analysis may be high, but environmental variability can dramatically alter the contributions of demographic rates in different environmental conditions. This potentially informative detail is neglected by deterministic analysis, yet it highlights one difficulty when extrapolating results from long-term analysis to shorter-term environmental change.  相似文献   

6.
Background and Aims Evaluation of population projection matrices (PPMs) that are focused on asymptotically based properties of populations is a commonly used approach to evaluate projected dynamics of managed populations. Recently, a set of tools for evaluating the properties of transient dynamics has been expanded to evaluate PPMs and to consider the dynamics of populations prior to attaining the stable-stage distribution, a state that may never be achieved in disturbed or otherwise ephemeral habitats or persistently small populations. This study re-evaluates data for a tropical orchid and examines the value of including such analyses in an integrative approach.Methods Six small populations of Lepanthes rubripetala were used as a model system and the R software package popdemo was used to produce estimates of the indices for the asymptotic growth rate (lambda), sensitivities, reactivity, first-time step attenuation, maximum amplification, maximum attenuation, maximal inertia and maximal attenuation. The response in lambda to perturbations of demographic parameters using transfer functions and multiple perturbations on growth, stasis and fecundity were also determined. The results were compared with previously published asymptotic indices.Key Results It was found that combining asymptotic and transient dynamics expands the understanding of possible population changes. Comparison of the predicted density from reactivity and first-time step attenuation with the observed change in population size in two orchid populations showed that the observed density was within the predicted range. However, transfer function analysis suggests that the traditional approach of measuring perturbation of growth rates and persistence (inertia) may be misleading and is likely to result in erroneous management decisions.Conclusions Based on the results, an integrative approach is recommended using traditional PPMs (asymptotic processes) with an evaluation of the diversity of dynamics that may arise when populations are not at a stable-stage distribution (transient processes). This method is preferable for designing rapid and efficient interventions after disturbances, and for developing strategies to establish new populations.  相似文献   

7.
1.  Many organisms inhabit strongly fluctuating environments but their demography and population dynamics are often analysed using deterministic models and elasticity analysis, where elasticity is defined as the proportional change in population growth rate caused by a proportional change in a vital rate. Deterministic analyses may not necessarily be informative because large variation in a vital rate with a small deterministic elasticity may affect the population growth rate more than a small change in a less variable vital rate having high deterministic elasticity.
2.  We analyse a stochastic environment model of the red kangaroo ( Macropus rufus ), a species inhabiting an environment characterized by unpredictable and highly variable rainfall, and calculate the elasticity of the stochastic growth rate with respect to the mean and variability in vital rates.
3.  Juvenile survival is the most variable vital rate but a proportional change in the mean adult survival rate has a much stronger effect on the stochastic growth rate.
4.  Even if changes in average rainfall have a larger impact on population growth rate, increased variability in rainfall may still be important also in long-lived species. The elasticity with respect to the standard deviation of rainfall is comparable to the mean elasticities of all vital rates but the survival in age class 3 because increased variation in rainfall affects both the mean and variability of vital rates.
5.  Red kangaroos are harvested and, under the current rainfall pattern, an annual harvest fraction of c . 20% would yield a stochastic growth rate about unity. However, if average rainfall drops by more than c . 10%, any level of harvesting may be unsustainable, emphasizing the need for integrating climate change predictions in population management and increase our understanding of how environmental stochasticity translates into population growth rate.  相似文献   

8.
9.
The effects of an increased disease mortality rate on the transient and asymptotic dynamics of Chinook salmon (Oncorhynchus tshawytscha) were investigated. Disease-induced mortality of juvenile salmon has become a serious concern in recent years. However, the overall effects of disease mortality on the asymptotic and transient dynamics of adult spawning abundance are still largely unknown. We explored various scenarios with regard to the density-dependent process, the distribution of survivorship over the juvenile phase, the disease mortality rate, and the infusion of stray hatchery fish. Our results suggest that the sensitivity to the disease mortality rate of the equilibrium adult spawning abundance and resilience (asymptotic return rate toward this equilibrium following a small perturbation) varied widely and differently depending on the scenario. The resilience and coefficient of variation of adult spawning abundance following a large perturbation were consistent with each other under the scenarios investigated. We conclude that the increase in disease mortality likely has an effect on fishery yield under a fluctuating environment, not only because the mean equilibrium adult spawning abundance has likely been reduced, but also because the resilience has likely decreased and the variance in adult spawning abundance has likely increased. We also infer the importance of incorporating finer-scale spatiotemporal information into population models and demonstrate a means for doing so within a matrix population modeling framework.  相似文献   

10.
Alden B. Griffith 《Oikos》2017,126(12):1675-1686
Perturbation analysis of population models is fundamental to elucidating mechanisms of population dynamics and examining scenarios of change. The use of integral projection models (IPMs) has increased in the last decade, and while many of the tools and approaches developed for matrix models remain relevant, the nature of IPMs expands the framework of perturbation analysis, with different approaches often requiring important considerations. This article provides a review of – and practical guide to – different perturbation approaches for IPMs, formalizes methodologies for perturbing IPM size transition probabilities, and highlights areas where researchers should be particularly careful and critical when conducting and interpreting perturbation analysis. I use a simulated dataset to compare five hierarchical perturbation approaches for IPMs found within 63 published studies, and apply a combination of approaches to the example of an invasive perennial plant. Other perturbation approaches for IPMs are also highlighted. Most perturbation analyses for IPMs to date have focused on the response of the asymptotic population growth rate (λ) to changes in elements of the discretized projection kernel and/or the growth– survival and reproduction– recruitment sub‐kernels. Perturbations to vital rate functions and regression predictions underlying these kernels provide mechanistic insight, but are less common and can require important considerations regarding the perturbation of size transitions separate from survival and the nature of the state variable (used to represent size). The second most common approach is more specific to IPMs and examines the influence of vital rate regression parameters, each of which can have broad influence on the population growth rate. Researchers using IPMs have many perturbation options available and should carefully consider which approach or combination of approaches is most applicable and interpretable for their specific questions.  相似文献   

11.
Environmental change continually perturbs populations from a stable state, leading to transient dynamics that can last multiple generations. Several long-term studies have reported changes in trait distributions along with demographic response to environmental change. Here we conducted an experimental study on soil mites and investigated the interaction between demography and an individual trait over a period of nonstationary dynamics. By following individual fates and body sizes at each life-history stage, we investigated how body size and population density influenced demographic rates. By comparing the ability of two alternative approaches, a matrix projection model and an integral projection model, we investigated whether consideration of trait-based demography enhances our ability to predict transient dynamics. By utilizing a prospective perturbation analysis, we addressed which stage-specific demographic or trait-transition rate had the greatest influence on population dynamics. Both body size and population density had important effects on most rates; however, these effects differed substantially among life-history stages. Considering the observed trait-demography relationships resulted in better predictions of a population's response to perturbations, which highlights the role of phenotypic plasticity in transient dynamics. Although the perturbation analyses provided comparable predictions of stage-specific elasticities between the matrix and integral projection models, the order of importance of the life-history stages differed between the two analyses. In conclusion, we demonstrate how a trait-based demographic approach provides further insight into transient population dynamics.  相似文献   

12.
13.
Ecologists have become aware of the role played by interannual climatic variability on the temporal dynamics of infectious diseases. In this report, I present evidence from data on measles cases in England and Wales showing that during the post-vaccination period, the interannual variability of winter weather (represented by the North Atlantic Oscillation, NAO) influences the annual dynamics of the disease. Using annual measles data from seven cities and simple logistic models, this study reveals how, after vaccination, NAO increases its effects on measles fluctuations. In addition, this study shows that vaccination may be represented as a simple vertical and lateral perturbation effect (Royama's classification), by reducing the maximum per capita growth rate and the equilibrium number of infected individuals . The results suggest that vaccination will not lead to outbreaks of measles from regular cyclic to irregular chaotic dynamics. In contrast, because of the reduction in per capita growth rates, the disease dynamics appear to be more stable than during the pre-vaccination period. The analysis of annual data on infectious diseases may be useful for detecting long-term effects of climate and complements the classical analyses and modeling based on monthly or seasonal time-step data.  相似文献   

14.
Empirical models are central to effective conservation and population management, and should be predictive of real-world dynamics. Available modelling methods are diverse, but analysis usually focuses on long-term dynamics that are unable to describe the complicated short-term time series that can arise even from simple models following ecological disturbances or perturbations. Recent interest in such transient dynamics has led to diverse methodologies for their quantification in density-independent, time-invariant population projection matrix (PPM) models, but the fragmented nature of this literature has stifled the widespread analysis of transients. We review the literature on transient analyses of linear PPM models and synthesise a coherent framework. We promote the use of standardised indices, and categorise indices according to their focus on either convergence times or transient population density, and on either transient bounds or case-specific transient dynamics. We use a large database of empirical PPM models to explore relationships between indices of transient dynamics. This analysis promotes the use of population inertia as a simple, versatile and informative predictor of transient population density, but criticises the utility of established indices of convergence times. Our findings should guide further development of analyses of transient population dynamics using PPMs or other empirical modelling techniques.  相似文献   

15.
Matrix population models are one of the most common mathematical models in ecology, which describe the dynamics of stage-structured populations and provide us many population statistics. One of the statistics, elasticity onto population growth rate, is frequently used and represents the degree of the relative impact of life history parameters to the population growth rate. Due to the utility of elasticities for cross-taxonomic comparisons, Silvertown and his coauthors have published multiple papers and reported the relationship between elasticities and life forms (or life history) in multiple plant species, using a triangle map (called “ternary plot”). To understand why their elasticities are located in specific regions of the ternary plot, we constructed four archetypes of population matrices, from which we simulated 24,000 randomly generated population matrices and obtained the consequent elasticities. We found a large discrepancy when comparing our results to those in Silvertown et al.'s study (Conserv Biol 10:591–597, 1996): for our simulated matrices where rapid transitions were not allowed (e.g., trees), the elasticity distribution resulted in a line across the ternary plot. We provided the mathematical proof for this result, and found that its slope depends on matrix dimension. We also used 1230 matrices from the COMPADRE Plant Matrix Database and calculated the elasticities. Our simulated results were validated with field data from COMPADRE: two straight lines appeared in the ternary plot. Furthermore, we answered several addressed questions, such as, “Is there any special elasticity distribution in matrices with high population growth rates?” and “Why are the elasticities of natural populations concentrated in the upper half of the ternary plot?”.  相似文献   

16.
Demographic models are widely used to produce management recommendations for different species. For invasive plants, current management recommendations to control local population growth are often based on data from a limited number of populations per species, and the assumption of stable population structure (asymptotic dynamics). However, spatial variation in population dynamics and deviation from a stable structure may affect these recommendations, calling into question their generality across populations of an invasive species. Here, I focused on intraspecific variation in population dynamics and investigated management recommendations generated by demographic models across 37 populations of a short-lived, invasive perennial herb (Lupinus polyphyllus). Models that relied on the proportional perturbations of vital rates (asymptotic elasticities) indicated an essential role for plant survival in long-term population dynamics. The rank order of elasticities for different vital rates (survival, growth, retrogression, fecundity) varied little among the 37 study populations regardless of population status (increasing or declining asymptotically). Summed elasticities for fecundity increased, while summed elasticities for survival decreased with increasing long-term population growth rate. Transient dynamics differed from asymptotic dynamics, but were qualitatively similar among populations, that is, depending on the initial size structure, populations tended to either increase or decline in density more rapidly than predicted by asymptotic growth rate. These findings indicate that although populations are likely to exhibit transient dynamics, management recommendations based on asymptotic elasticities for vital rates might be to some extent generalised across established populations of a given short-lived invasive plant species.  相似文献   

17.
Dynamic models of infectious diseases as regulators of population sizes   总被引:9,自引:0,他引:9  
Five SIRS epidemiological models for populations of varying size are considered. The incidences of infection are given by mass action terms involving the number of infectives and either the number of susceptibles or the fraction of the population which is susceptible. When the population dynamics are immigration and deaths, thresholds are found which determine whether the disease dies out or approaches an endemic equilibrium. When the population dynamics are unbalanced births and deaths proportional to the population size, thresholds are found which determine whether the disease dies out or remains endemic and whether the population declines to zero, remains finite or grows exponentially. In these models the persistence of the disease and disease-related deaths can reduce the asymptotic population size or change the asymptotic behavior from exponential growth to exponential decay or approach to an equilibrium population size.Research supported by Centers for Disease Control contract 200-87-0515. Support services provided at the University of Iowa Center for Advanced Studies  相似文献   

18.
A virologic marker, the number of HIV RNA copies or viral load, is currently used to evaluate antiviral therapies in AIDS clinical trials. This marker can be used to assess the antiviral potency of therapies, but is easily affected by drug exposures, drug resistance and other factors during the long-term treatment evaluation process. The study of HIV dynamics is one of the most important development in recent AIDS research for understanding the pathogenesis of HIV-1 infection and antiviral treatment strategies. Although many HIV dynamic models have been proposed by AIDS researchers in the last decade, they have only been used to quantify short-term viral dynamics and do not correctly describe long-term virologic responses to antiretroviral treatment. In other words, these simple viral dynamic models can only be used to fit short-term viral load data for estimating dynamic parameters. In this paper, a mechanism-based differential equation models is introduced for characterizing the long-term viral dynamics with antiretroviral therapy. We applied this model to fit different segments of the viral load trajectory data from a simulation experiment and an AIDS clinical trial study, and found that the estimates of dynamic parameters from our modeling approach are very consistent. We may conclude that our model can not only characterize long-term viral dynamics, but can also quantify short- and middle-term viral dynamics. It suggests that if there are enough data in the early stage of the treatment, the results from our modeling based on short-term information can be used to capture the performance of long-term care with HIV-1 infected patients.  相似文献   

19.
As biological invasions increasingly affect natural systems, the need for methods that can quantify the processes responsible for invasion success has increased. Further, methods should be geared to the formulation of management strategies. Demographic analyses are designed to explore the causes and properties of population change. Matrix population models, a commonly used technique for demographic analysis, have been applied to the analysis of stage-structured populations. However, most commonly, analyses have focused on long-term outcomes dynamics (ergodic dynamics). The methods available for analysis of matrix population models have recently been extended to facilitate analysis of the transient dynamics most important to invasion analysis. In this paper we analyze the transient population dynamics of three invasive shrubs and compare them to ergodic dynamics. Cytisus scoparius, Clidemia hirta, and Ardisia elliptica come from different parts of the world and are all now found in the United States of America. They also have published transition matrices that measure the probabilities that any one life-history stage will transition to another over an annual time step. These matrices have been estimated from multi-year data collected from plots in various environments. Our comparative study of transient and ergodic dynamics of invasive shrubs shows that, for all the considered shrub species, there was a clear difference between the sensitivities drawn from these two approaches. The transient sensitivities of earlier life-history transitions showed magnified importance relative to ergodic sensitivities. This was especially true of A. elliptica for which the stable population structure was most different from the starting structure analyzed in detail here. For other species, as stable population structures were heavily weighted towards early stages, the differences in the importance of early transitions transiently and ergodically were less dramatic. Late life transitions showed magnified importance in areas towards the center of the invasion or in older invasion areas. Finally, populations with shorter estimated generation times show greater transient sensitivity to early life-history stages; but the pattern was complex and varied according to species, and was also observed across other life-history transitions. Overall, the ambiguity and complexity of the results highlight the power of considering transient population dynamics for invading species, as well as the importance of specific biological and ecological knowledge of the invading species. Although there may be commonalities across invasions, important decisions on control or inference on population dynamics should treat invasions as individual, unique events.  相似文献   

20.
We study the transient dynamics, following a spatially-extended perturbation of models describing populations residing in advective media such as streams and rivers. Our analyses emphasize metrics that are independent of initial perturbations—resilience, reactivity, and the amplification envelope—and relate them to component spatial wavelengths of the perturbation using spatial Fourier transforms of the state variables. This approach offers a powerful way of understanding the influence of spatial scale on the initial dynamics of a population following a spatially variable environmental perturbation, an important property in determining the ecological implications of transient dynamics in advective systems. We find that asymptotically stable systems may exhibit transient amplification of perturbations (i.e., have positive reactivity) for some spatial wavelengths and not others. Furthermore, the degree and duration of amplification varies strongly with spatial wavelength. For two single-population models, there is a relationship between transient dynamics and the response length that characterizes the steady state response to spatial perturbations: a long response length implies that peak amplification of perturbations is small and occurs fast. This relationship holds less generally in a specialist consumer-resource model, likely due to the model’s tendency for flow-induced instabilities at an alternative characteristic spatial scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号