共查询到20条相似文献,搜索用时 0 毫秒
1.
In human metallothionein-2, the exchange rate constants of ten amide protons were found to range from 1.7 x 10(-4) to 1 x 10(-1) min-1 at pH 6.3 and 8 degrees C. Most of these slowly exchanging protons could be associated with hydrogen bonds in secondary structure elements of the alpha-domain. Amide proton exchange rates thus present an additional criterion for the structural characterization of different metallothioneins, which could be particularly valuable for comparisons of different homologous protein preparations containing nuclear magnetic resonance-inactive metal ions, where the metal-polypeptide co-ordinative bonds cannot be identified directly. 相似文献
2.
The spin equilibria of several derivatives of human methemoglobin were probed by resonance Raman scattering. The intensity of lines in the Raman spectrum gives a measure of the high-spin (S = 5/2) to low-spin (S = 1/2) ratio which agrees well with the spin equilibria determined from direct magnetic susceptibility measurements. The addition of bezafibrate (BZF) to methemoglobin in the absence of organic phosphate, IHP, has very little effect on the spin equilibrium, whereas in the presence of IHP it augments the change in spin significantly. When both IHP and BZF are added to the mixed-spin derivatives (H2O, SCN-, OCN-, and NO2-) of human methemoglobin, the spin equilibrium is shifted toward higher spin by about 700 cal/mol, similar to the spin change detected in derivatives of carp methemoglobin upon addition of IHP alone. These data support a general mechanism for the allosteric transition in which a constant fraction of the cooperative energy (approximately 20%) is detected at the heme of the ferric ligand-bound forms. 相似文献
3.
The band widths in Raman spectra are sensitive to dynamics active on a time scale from 0.1 to 10 ps. The band widths of nucleotide vibrations and their dependence on temperature, concentration, and structure are reported. From the experimental band widths and second moments, it is derived that the adenine vibrations at 725, 1336, 1480, and 1575 cm −1, and the uracil vibration at 787 cm −1, are in the fast modulation limit. The correlation times of the perturbations are faster than 0.4 ps. Thermal melting of the helical structure in polynucleotides results in larger band widths, due to an increase in vibrational dephasing and energy relaxation as a consequence of the increased interaction of the base moieties with the solvent molecules. The band width of the 725 cm −1 adenine vibration is dependent on the type and structure of the backbone. It is found to be perturbed by movements of the sugar-phosphate moiety relative to the base. The band width of the 1575 cm −1 adenine vibration is found to be sensitive to the base-pairing interaction. From a comparison of the band widths in polynucleotides with a different base sequence (homopolymer vs alternating purine-pyrimidine sequence), it is concluded that resonant vibrational energy transfer between the base molecules is not important as a relaxation process for the vibrational band widths of nucleotides. Several theoretical models for the interpretation of band widths are discussed. The theory does not take into account the strong hydrogen-bonding nature water and hence fails to describe the observations in nucleotide-water systems. The bands of the carbonyl stretching vibrations are inhomogeneously broadened. The carbonyl groups have a strong dipolar interaction with the polar water molecules and are therefore strongly perturbed by coupling to the heatbath via hydrogen bonds. © 1997 John Wiley & Sons, Inc. Biopoly 41: 751–763, 1997 相似文献
4.
Raman and resonance Raman spectra of the complex DNA-adriamycin in aqueous solution have been recorded and analysed. Calf thymus DNA was used and it is found that in the complex DNA-adriamycin the chromophore of adriamycin is intercalated in the GC sequences. The substituents on the rings give hydrogen bonding interactions with the base pairs above and below the intercalation site. It is suggested from the Raman and resonance Raman spectral modifications that the phenolic groups of the chromophore are involved in the drug-DNA intercalation, in addition to pi-pi, hydroxyl and amino group interactions. 相似文献
6.
Soluble guanylate cyclase (sGC, EC 4.6.1.2) acts as a sensor for nitric oxide (NO), but is also activated by carbon monoxide in the presence of an allosteric modulator. Resonance Raman studies on the structure-function relations of sGC are reviewed with a focus on the CO-adduct in the presence and absence of allosteric modulator, YC-1, and substrate analogues. It is demonstrated that the sGC isolated from bovine lung contains one species with a five-coordinate (5c) ferrous high-spin heme with the Fe-His stretching mode at 204 cm(-1), but its CO adduct yields two species with different conformations about the heme pocket with the Fe-CO stretching (nuFe-CO) mode at 473 and 489 cm(-1), both of which are His- and CO-coordinated 6c ferrous adducts. Addition of YC-1 to it changes their population and further addition of GTP yields one kind of 6c (nuFe-CO=489 cm(-1)) in addition to 5c CO-adduct (nuFe-CO=521 cm(-1)). Under this condition the enzymatic activity becomes nearly the same level as that of NO adduct. Addition of gamma-S-GTP yields the same effect as GTP does but cGMP and GDP gives much less effects. Unexpectedly, ATP cancels the effects of GTP. The structural meaning of these spectroscopic observations is discussed in detail. 相似文献
7.
Deuterium/hydrogen exchange factors (chi) were measured for the backbone amide sites of the membrane-bound forms of the 50-residue fd coat protein and the 23-residue magainin2 peptide in lipid micelles by solution nuclear magnetic resonance spectroscopy. By combining kinetic and thermodynamic effects, deuterium/hydrogen exchange factors overcome the principal limitations encountered in the measurements of kinetic protection factors and thermodynamic fractionation factors for membrane proteins. The magnitudes of the exchange factors can be correlated with the structure and topology of membrane-associated polypeptides. In fd coat protein, residues in the transmembrane helix have exchange factors that are substantially smaller than those in the amphipathic surface helix or the loop connecting the two helices. For the amphipathic helical peptide, magainin2, the exchange factors of residues exposed to the solvent are appreciably larger than those that face the hydrocarbon portion of membrane bilayers. These examples demonstrate that deuterium/hydrogen exchange factors can be measured by solution NMR spectroscopy and used to identify residues in transmembrane helices as well as to determine the polarity of amphipathic helices in membrane proteins. 相似文献
8.
Individual species of the photochemical cycle of bacteriorhodopsin, a retinal-protein complex of Halobacteria, were studied in aqueous suspensions of the "purple membrane" at room temperature by resonance Raman (RR) spectroscopy with flow systems. Two pronounced deuterium shifts were found in the RR spectra of the all-trans complex BR-570 in H2O-D2O suspensions. The first is ascribed to C=NH+ (C=ND+) stretching vibrations of the protonated Schiff base which links retinal to opsin. The second is assigned tentatively to an "X-H" ("X-D") bending mode, where "X" is an atom which carries an exchangeable proton. A RR spectrum of the 13-cis-retinal complex "BR-548" could be deduced from spectra of the dark-adapted purple membrane. The RR spectrum of the M-412 intermediate was monitored in a double-beam pump-probe experiment. The main vibrational features of the intermediate M' in the reaction M-412 in equilibrium hv M' leads to delta BR-570 could be deduced from a photostationary mixture of M-412 and M'. Difference procedures were applied to obtain RR spectra of the L-550 intermediate and of two new long-lived species, R1'-590 and R2-550. From kinetic data it is suggested that T1'-590 links the proton-translocating cycle to the "13-cis" cycle of BR-548. The protonation and isomeric states of the different species are discussed in light of the new spectroscopic and kinetic data. It is found that conformational changes during the photochemical cycle play an important role. 相似文献
9.
Complex formation between ferricytochrome c peroxidase (CCP) and ferricytochrome c from yeast [cyt(Y)] and horse heart [cyt(H)] was studied by resonance Raman spectroscopy. On the basis of a detailed spectral analysis of the free proteins, it was possible to attribute changes in the spectra of the complexes to the individual proteins. At pH 7.0 both cyt(Y) and cyt(H) binding induces an increase in the six-coordinate low-spin configuration of CCP from 9% to 19% at the expense of the five-coordinate high-spin state, which drops from 84% to 74%. In the free and complexed state, CCP exhibits a constant fraction of the six-coordinate high-spin form (approximately 7%). In addition to affecting the coordination state, there is also a cyt-specific structural response of CCP to complexation. In the cyt(Y)-CCP complex, the peripheral vinyl and propionate substituents of CCP are more rigidly fixed in the protein matrix, whereas binding of cyt(H) only slightly perturbs the conformations of these side chains. The biological significance of the conformational changes in CCP are discussed. In contrast to CCP, there are no detectable structural changes in either cyt(Y) or cyt(H) upon complex formation. 相似文献
10.
Objective: Muscle triglyceride can be assessed in vivo using computed tomography (CT) and 1H magnetic resonance spectroscopy (MRS), two techniques that are based on entirely different biophysical principles. Little is known, however, about the cross‐correlation between these techniques and their test—retest reliability. Research Methods and Procedures: We compared mean muscle attenuation (MA) in soleus and tibialis anterior (TA) muscles measured by CT with intra‐ and extramyocellular lipids (IMCL and EMCL, respectively) measured by MRS in 51 volunteers (26 to 72 years of age, BMI = 25.5 to 39.3 kg/m 2). MA of midthighs was also measured in a subset ( n = 19). Test—retest measurements were performed by CT ( n = 6) and MRS ( n = 10) in separate sets of volunteers. Results: MA of soleus was significantly associated with IMCL ( r = ?0.64) and EMCL, which by multiple regression analysis was explained mostly by IMCL ( p < 0.001) rather than EMCL (β = ?0.010, p = 0.94). Muscle triglyc‐eride was lower in TA than in soleus, and MA of TA was significantly correlated with EMCL ( r = ?0.40) but not IMCL ( r = ?0.16). By CT, MA of midthighs was correlated with MA in soleus ( r = 0.40, p = 0.07) and whole calf ( r = 0.62, p < 0.05). Finally, both MA and IMCL were highly reliable in soleus (coefficient of variation = <2% and 6.7%, respectively) and less reliable in TA (4% and 10%, respectively). Discussion: These results support the use of both CT and MRS as reliable methods for assessing skeletal muscle lipid. 相似文献
11.
The present study investigated the possibility that pyrroloquinolinequinone (PQQ), an aromatic carbonyl recently indicated to be the carbonyl cofactor in bovine plasma amine oxidase, may also be present at the active site of lysyl oxidase. The absorption and resonance Raman spectra of the phenylhydrazones of bovine plasma amine oxidase, of peptides derived from the active site of bovine aorta lysyl oxidase, and of PQQ were very similar, indicating that the carbonyl cofactor of lysyl oxidase is PQQ or a compound which closely resembles PQQ. 相似文献
12.
Nitration of tyrosine with tetranitromethane shifts the tyrosine absorption spectrum and abolishes its 200 nm-excited resonance Raman spectrum. There is no detectable resonance Raman contribution from either reactants or products. Likewise, modification of tryptophan with 2-hydroxy-5-nitrobenzyl bromide (HNBB) shifts its absorption spectrum and abolishes its 218 nm-excited resonance Raman spectrum. In this case resonance Raman bands due to HNBB are seen, but are readily distinguishable from the tryptophan spectrum, can be computer-subtracted. When stellacyanin was treated with tetranitromethane the UV resonance Raman spectrum was greatly attenuated; quantitation of the 850 cm-1 tyrosine band intensity gave a value of 4.3 tyrosines modified out of the seven present in stellacyanin, in good agreement with an estimate of 4.7 from the absorption spectrum. For cytochrome c, the resonance Raman spectrum indicates that two out of the four tyrosines are modified by tetranitromethane treatment, consistent with the crystal structure, which shows two buried tyrosines and two at the protein surface. Treatment of stellacyanin with HNBB gave a reduction in the tryptophan spectrum, excited at 218 nm, consistent with one of the three tryptophans being modified. These modification procedures should be useful in distinguishing spectra of buried tyrosine and tryptophan residues from those at the surface. 相似文献
13.
The interaction of ferricytochrome c with negatively charged heteropolytungstates was studied by resonance Raman spectroscopy. In analogy to previous findings on ferricytochrome c bound to other types of charged interface (Hildebrandt, P. and Stockburger, M. (1989) Biochemistry 28, 6710-6721, 6722-6728), it was shown that in these complexes the conformational states I and II are stabilized. While in state I, the structure is the same as is in the uncomplexed heme protein, in state II three different coordination configurations coexist, i.e., a six-coordinated low-spin, a five-coordinated high-spin and a six-coordinated high-spin form. These configurations constitute thermal coordination equilibria whose thermodynamic properties were determined. The detailed analysis of the low-frequency resonance Raman spectra reveals that in state II the heme pocket assumes an open structure leading to a significantly higher flexibility of the heme group compared to the native ferricytochrome c. It is concluded that these structural changes are the result of Coulombic attractions between the polyanions and the lysine residues around the exposed heme edge which destabilize the heme crevice. Modifications of these interactions upon variation of the ionic strength, the pH or the type of the polytungstate are sensitively reflected by changes of the coordination equilibria in state II as well as of the conformational equilibrium of state I and state II. The conformational changes in state II significantly differ from those associated with the alkaline transition of ferricytochrome c. However, there are some structural similarities between the acid form of the heme protein stable below pH 2.5 in aqueous solution and the six-coordinated high-spin configuration of the bound ferricytochrome c at neutral pH (state II). This suggests that electrostatic interactions with the heteropolytungstates perturb the ionic equilibria of those amino acid side chains which are involved in the acid-induced transition leading to a significant upshift of the apparent pKa. 相似文献
14.
Hemoglobins have been discovered in organisms from virtually all kingdoms. Their presence in unicellular organisms suggests that the gene for hemoglobin is very ancient and that the hemoglobins must have functions other than oxygen transport, in view of the fact that O2 delivery is a diffusion-controlled process in these organisms. Based on sequence alignment, three groups of hemoglobins have been characterized in unicellular organisms. The group-one hemoglobins, termed truncated hemoglobins, consist of proteins with 110-140 amino acid residues and a novel two-over-two alpha-helical sandwich motif. The group-two hemoglobins, termed flavohemoglobins, consist of a hemoglobin domain, with a classical three-over-three alpha-helical sandwich motif, and a flavin-containing reductase domain that is covalently attached to it. The group-three hemoglobins consist of myoglobin-like proteins that have high sequence homology and structural similarity to the hemoglobin domain of flavohemoglobins. In this review, recent resonance Raman studies of each group of these proteins are presented. Their implications are discussed in the context of the structural and functional properties of these novel hemoglobins. 相似文献
15.
Raman spectra of antenna chlorophyll a and chlorophyll b were selectively obtained from chloroplasts of green plants and from monocellular algae, using resonance enhancement in the respective Soret bands of these molecules, at 35 K. It is shown that: Antenna chlorophyll a molecules occur in at least five discrete categories, distinguished by different extramolecular bonding of their 9-keto carbonyl groups. These vibrational categories are probably identical in nature and number among the different organisms studied, but differ in their relative populations. Chlorophyll b molecules occur in at least two different categories differing by the strength of the interactions of their 3-formyl C = 0 groups. These vibrational categories also appear as universal. Most chlorophyll a and b molecules have their magnesium atoms bound to a single foreign ligand, whose nature may depend on the population considered. Resonance Raman spectra of antenna structures, including those of organisms devoid of chlorophyll b, were compared to resonance Raman spectra of chlorophyll a and b in monomeric, oligomeric and hydrated polymeric states, at room temperature and at 35 K. No sizable amount of antenna chlorophyll a or b occurs as dry or hydrated oligomers, or polymers. The antenna molecules are thus necessarily bound to foreign molecules, probably proteins, through H-bonding on their formyl and/or keto carbonyl groups and through bonding of their magnesium atoms. 相似文献
16.
Resonance Raman studies of the thermal denaturation of bacteriorhodopsin from Halobacterium cutirubrum show that the N-retinylidenelysine moiety present in the chromophore is N-protonated. This corroborates an earlier suggestion of Lewis et al. ((1974) Proc. Natl. Acad. Sci. U.S., 71, 4462-4466). The widely differing excitation profiles of two -C=C- stretching modes are explained in terms of the light-initiated reaction cycle in the molecule. Glutaraldehyde fixation of bacteriorhodopsin has no effect on the intensity ratio of the two modes, suggesting that no large motion of the protein is necessary for the photoreaction cycle to occur. 相似文献
18.
Resonance Raman spectroscopy can provide details of molecular structure via the enhancement of specific vibrational bands in the spectrum of the scattered light when the laser excitation is tuned to electronic absorption wavelengths of the molecule. The availability of lasers operating in the deep ultraviolet region makes it possible to apply this technique to problems of protein structure. The backbone conformation and the environments of aromatic side chains can be probed via appropriate enhancement of selected vibrational modes. In this article we investigate ultraviolet resonance Raman (UVRR) spectra from the coat protein of the filamentous bacteriophage, fd, in the intact virus and in sodium dodecyl sulfate (SDS) suspension. The results indicate that 1) the protein is completely alpha-helical in the mature virus, but loses a large fraction of its helix content in the SDS micelles. 2) The two tyrosine residues appear to behave as H-bond acceptors in the intact phage but this interaction is lost in the micelles. 3) The tryptophan residue is not solvent-exposed in either protein conformation, although in SDS it is accessible to H/D exchange with the solvent. 4) The three phenylalanine residues are involved in stacking interactions in the intact virus; these are disrupted in the SDS micelles. 5) The single proline residue appears to be in a trans conformation both in the virus and in the micelles. 相似文献
19.
Channelrhodopsin-2 mediates phototaxis in green algae by acting as a light-gated cation channel. As a result of this property, it is used as a novel optogenetic tool in neurophysiological applications. Structural information is still scant and we present here the first resonance Raman spectra of channelrhodopsin-2. Spectra of detergent solubilized and lipid-reconstituted protein were recorded under pre-resonant conditions to exclusively probe retinal in its electronic ground state. All- trans retinal was identified to be the favoured configuration of the chromophore but significant contributions of 13- cis were detected. Pre-illumination hardly changed the isomeric composition but small amounts of presumably 9- cis retinal were found in the light-adapted state. Spectral analysis suggested that the Schiff base proton is strongly hydrogen-bonded to a nearby water molecule. 相似文献
20.
The Pseudomonas bacteriophage Pf3 is a long and narrow filament consisting of a covalently closed DNA single strand of 5833 bases sheathed by approximately 2500 copies of a 44-residue subunit. Ultraviolet resonance Raman spectra excited at 257, 244, 238, and 229 nm and off-resonance Raman spectra excited at 514.5 nm are reported for Pf3 in both H2O and D2O solutions. The key Raman bands are assigned to specific protein and DNA groups of the native virion assembly. The results are compared with proposed assembly models and Raman spectra recently reported for the isomorphous (class II) Pseudomonas phage Pf1 and the morphologically distinct (class I) coliphage fd [Wen, Z. Q., Overman, S. A., and Thomas, G. J. , Jr. (1997) Biochemistry 36, 7810-7820; Wen, Z. Q., Armstrong, A., and Thomas, G. J., Jr. (1999) Biochemistry 38, 3148-3156]. Surprisingly, deoxynucleosides of the packaged DNA genome of Pf3 adopt the same conformation (C3'-endo/anti) found for DNA packaged in the class I fd virion rather than that (C2'-endo/anti) associated with DNA in the isomorphous Pf1 virion. However, DNA base stacking in Pf3, as judged by Raman hypochromic effects, differs significantly from that occurring in either Pf1 or fd. Thus, the single-stranded DNA genomes of Pf3, Pf1, and fd are all organized differently within their respective capsids, implying that local subunit-DNA interactions may be important in determining the structure specific to each native assembly. The present study confirms a completely alpha-helical secondary structure for the Pf3 subunit and an unusual indolyl ring environment for the subunit tryptophan residue (Trp-38). 相似文献
|