首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostaglandin (PG) D3 has been identified as an inhibitor of human platelet aggregation, but little is known of the hemodynamic activity of this material. In morphine pretreated, chloralose-urethan anesthetized dogs, bolus intravenous injections (1, 3.2 and 10 μg/kg) of PGD3 and also PGD2 were associated with marked, dose-related increases in pulmonary arterial pressure. Cardiac index and rate increased, while peripheral vascular resistance decreased in response to injections of PGD3. A biphasic (depressor followed by a pressor phase) effect on systemic arterial pressure was observed after PGD2, while PGD3 was associated with dose-related depressor responses. Graded intravenous infusions (0.25, 0.50 and 1.0 μg/kg/min) of PGD3 and PGD2 were associated with qualitatively similar cardiovascular responses. Quantitatively, PGD3 infusions were associated with greater decreases in peripheral vascular resistance and greater increases in cardiac output, heart rate, and peak left ventricular dp/dt than were infusions of PGD2. In contrast, PGD3 was less potent than PGD2 as a pulmonary pressor material. Systemic arterial pressure responses to infusions of the prostaglandins were variable. In these experiments, PGD3 and PGD2 were associated with qualitatively similar cardiovascular responses characterized by peripheral vasodilatation.  相似文献   

2.
Chronic administration of d, l isoproterenol, 0.2 – 5 mg/kg/day, for 14–21 days in the male rat produced marked increases in dry ventricle weight (21.1 – 43.6%; p < 0.001). In comparison, an α-adrenergic agonist, phenylephrine (7.5 mg/kg/day) decreased ventricle weight (?15.3%; p < 0.025). Also, isoproterenol injection at 5 mg/kg/day decreased cardiac actomyosin ATPase activity by 23.3% (p < 0.0025) while phenylephrine, administered as above, did not influence ATPase activity. The effect of isoproterenol on heart weight was completely blocked by the β1-adrenergic antagonist practolol (5 mg/kg/day). Albuterol, a relatively specific β2-adrenergic agonist was less potent than isoproterenol in producing cardiac hypertrophy. l-Epinephrine injection, 0.8 mg/kg/day for 14 days, had no effect on heart weight. However, l-epinephrine produced cardiac hypertrophy (22.4% p < 0.001) when the animals were preinjected with the α-adrenergic antagonist, phenoxybenzamine (5 mg/kg/day). The data indicate that cardiac hypertrophy can be produced by stimulation of the β1-adrenergic receptors of the heart; apparently, stimulation of α-adrenergic receptors opposes β-adrenergic hypertrophic effects.  相似文献   

3.
Skeletal myopathy is a hallmark of heart failure (HF) and has been associated with a poor prognosis. HF and other chronic degenerative diseases share a common feature of a stressed system: sympathetic hyperactivity. Although beneficial acutely, chronic sympathetic hyperactivity is one of the main triggers of skeletal myopathy in HF. Considering that β2‐adrenoceptors mediate the activity of sympathetic nervous system in skeletal muscle, we presently evaluated the contribution of β2‐adrenoceptors for the morphofunctional alterations in skeletal muscle and also for exercise intolerance induced by HF. Male WT and β2‐adrenoceptor knockout mice on a FVB genetic background (β2KO) were submitted to myocardial infarction (MI) or SHAM surgery. Ninety days after MI both WT and β2KO mice presented to cardiac dysfunction and remodelling accompanied by significantly increased norepinephrine and epinephrine plasma levels, exercise intolerance, changes towards more glycolytic fibres and vascular rarefaction in plantaris muscle. However, β2KO MI mice displayed more pronounced exercise intolerance and skeletal myopathy when compared to WT MI mice. Skeletal muscle atrophy of infarcted β2KO mice was paralleled by reduced levels of phosphorylated Akt at Ser 473 while increased levels of proteins related with the ubiquitin‐–proteasome system, and increased 26S proteasome activity. Taken together, our results suggest that lack of β2‐adrenoceptors worsen and/or anticipate the skeletal myopathy observed in HF.  相似文献   

4.
The insular cortex (IC) is a limbic structure involved in cardiovascular responses observed during aversive threats. However, the specific neurotransmitter mediating IC control of cardiovascular adjustments to stress is yet unknown. Therefore, in the present study we investigated the role of local IC adrenoceptors in the cardiovascular responses elicited by acute restraint stress in rats. Bilateral microinjection of different doses (0.3, 5, 10 and 15 nmol/100 nl) of the selective α1-adrenoceptor antagonist WB4101 into the IC reduced both the arterial pressure and heart rate increases elicited by restraint stress. However, local IC treatment with different doses (0.3, 5, 10 and 15 nmol/100 nl) of the selective α2-adrenoceptor antagonist RX821002 reduced restraint-evoked tachycardia without affecting the pressor response. The present findings are the first direct evidence showing the involvement of IC adrenoceptors in cardiovascular adjustments observed during aversive threats. Our findings indicate that IC noradrenergic neurotransmission acting through activation of both α1- and α2-adrenoceptors has a facilitatory influence on pressor response to acute restraint stress. Moreover, IC α1-adrenoceptors also play a facilitatory role on restraint-evoked tachycardiac response.  相似文献   

5.
The synthesis of extracellular matrix including collagen during wound healing responses involves signaling via reactive oxygen species (ROS). We hypothesized that NADPH oxidase isoform Nox4 facilitates the stimulatory effects of the profibrotic cytokine transforming growth factor (TGF) β1 on collagen production in vitro and in vivo. TGFβ1 stimulated collagen synthesis and hydrogen peroxide generation in mouse cardiac fibroblasts, and both responses were attenuated by a scavenger of superoxide and hydrogen peroxide (EUK-134). Furthermore, by expressing a dominant negative form of Nox4 (Adv-Nox4ΔNADPH) in fibroblasts, TGFβ1-induced hydrogen peroxide production and collagen production were abrogated, suggesting that Nox4-dependent ROS are important for TGFβ1 signaling in collagen production. This was confirmed by the inhibitory effect of an adenovirus carrying siRNA targeting Nox4 (Adv-Nox4i) on TGFβ1-induced collagen synthesis and expression of activated myofibroblasts marker smooth muscle alpha actin. Finally we used a mouse model of subcutaneous sponge implant to examine the role of Nox4 in the local stimulatory effects of TGFβ1 on collagen accumulation in vivo. TGFβ1-induced collagen accumulation was significantly reduced when the sponges were instilled with Adv-Nox4ΔNADPH. In conclusion, Nox4 acts as an intermediary in the signaling of TGFβ1 to facilitate collagen synthesis.  相似文献   

6.
It is well known that guinea pig β2 adrenoceptors (Gβ2ARs) and human β2 adrenoceptors (Hβ2ARs) have structural similarity. However, only one conformational state of Gβ2ARs has been studied – the putative inactive state. As adrenoceptors have a repertoire of conformations, and there is evidence that a certain conformation is stabilised as a ligand approaches, the aim of this study was to build four models of Gβ2ARs by using putative active/inactive Hβ2AR conformers as a template. We evaluated the accuracy of these models in regard to the binding mode and affinity values of a set of known β2AR ligands through docking and molecular dynamics simulations. During docking simulations, ligands reached Gβ2AR sites similar to those reported for Hβ2ARs. The greatest differences between conformational states were found in the domains (TM5 and TM6) previously suggested as being key to ligand recognition. The coefficients of determination between experimental and calculated affinity values were near to but less than 0.66 in all cases. The highest values were for agonists on the active models and antagonists on the inactive model. The four Gβ2AR models proved useful for analysing agonist/antagonist activity. The results suggest that the selection of an adequate model is dependent on the intrinsic activity of a given ligand.  相似文献   

7.
《Theriogenology》1996,45(8):1463-1472
The mammalian ovarian cycle is a strictly regulated process that is dependent on the intimate interactions among the 3 cell types in the follicle — theca, granulosa, and oocyte. The cycle has been shown to be controlled by gonadotropins as well as locally produced peptide factors. In this study, an in vitro culture system was used to study the roles of 2 locally produced ovarian peptide factors, transforming growth factor-β1 (TGF-β1) and activin-A, on porcine granulosa cell steroidogenesis. Gonadotropin stimulated cultured porcine granulosa cells (from medium-sized follicles) were pretreated with 100 ng/ml follicle-stimulating hormone (FSH) for 48 h and then treated with 1 ng/ml TGF-β1, 100 ng/ml activin-A, TGF-β1 plus activin-A, or received no treatment (control) for 48 h, From our previous studies, the concentrations of the 2 growth factors were determined to produce maximal antisteroidogenic effects in porcine granulosa cells. Progesterone (P4) production, estradiol-17β (E2) production, and aromatase activity for gonadotropin-stimulated porcine granulosa cells treated with TGF-β1, activin-A, and TGF-β1 plus activin-A were significantly (P < 0.05) reduced fromthat of the control. The same procedures were conducted on basal steroidogenesis studies in which no pretreatment with FSH was performed. Both P4 and E2 production and aromatase activity for porcine granulosa cells treated with TGF-β1, activin-A and TGF-β1 plus activin-A were significantly (P < 0.05) inhibited compared with the control. Our results indicate that both TGF-β1 and activin-A can inhibit FSH-stimulated and basal steroidogeneses in porcine granulosa cells and, thus, may act as local atretic factors during follicular development. When the 2 growth factors were given in combination at concentrations that would produce maximal steroidogenic inhibition, they were not able to produce a synergistic effect. These results are consistent with the current theory that TGF-β1 and activin-A may act via the same messenger system, a serine-threonine kinase.  相似文献   

8.
Phosphatidic acid (PA), generated downstream of monomeric Rho GTPases via phospholipase D (PLD) and additionally by diacylglycerol kinases (DGK), both stimulates phospholipase C-β1 (PLC-β1) and potentiates stimulation of PLC-β1 activity by Gαq in vitro. PA is a potential candidate for integrating signaling by monomeric and heterotrimeric G proteins to regulate signal output by G protein coupled receptors (GPCR), and we have sought to understand the mechanisms involved. We previously identified the region spanning residues 944–957, lying within the PLC-β1 C-terminus αA helix and flexible loop of the Gαq binding domain, as required for stimulation of lipase activity by PA in vitro. Regulation by PA does not require residues essential for stimulation by Gαq or GTPase activating activity. The present studies evaluated shorter alanine/glycine replacement mutants and finally point mutations to identify Tyr952 and Ile955 as key determinants for regulation by PA, assessed by both in vitro enzymatic and cell-based co-transfection assays. Replacement of Tyr952 and Ile955, PLC-β1 (Y952G/I955G), results in an 85% loss in stimulation by PA relative to WT-PLC-β1 in vitro. COS 7 cells co-transfected with PLC-β1 (Y952G/I955G) demonstrate a 10-fold increase in the EC50 for stimulation and a 60% decrease in maximum stimulation by carbachol via Gαq linked m1 muscarinic receptors, relative to cells co-transfected with WT-PLC-β1 but otherwise similar conditions. Residues required for regulation by PA are not essential for stimulation by G protein subunits. WT-PLC-β1 and PLC-β1(Y952G/I955G) activity is increased comparably by co-transfection with Gαq and neither is markedly affected by co-transfection with Gβ1γ2. Inhibiting PLD-generated PA production by 1-butanol has little effect on maximum stimulation, but shifts the EC50 for agonist stimulation of WT-PLC-β1 by 10-fold, producing a phenotype similar to PLC-β1 (Y952G/I955G) with respect to agonist potency. 1-Butanol is without effect on carbachol stimulated PLC activity in cells co-transfected with either PLC-β1(Y952G/I955G) or on endogenous PLC activity, indicating that regulation by PA requires direct interaction with the PLC-β1 PA-binding region. These data show that endogenous PA regulates signal output by Gαq-linked GPCRs in transfected cells directly through PLC-β1. Gαq and PA may co-ordinate to regulate signaling. Regulation by PA may constitute part of a mechanism that routes receptor signaling to specific PLC isoforms.  相似文献   

9.
Gene therapy using in vivo recombinant adenovirus-mediated gene transfer is an effective technique that offers great potential to improve existing drug treatments for the complex cardiovascular diseases of heart failure and vascular smooth muscle intimal hyperplasia. Cardiac-specific adenovirus-mediated transfer of the carboxyl-terminus of the β-adrenergic receptor kinase (βARKct), acting as a Gβγ-β-adrenergic receptor kinase (βARK)1 inhibitor, improves basal and agonist-induced cardiac performance in both normal and failing rabbit hearts. In addition, βARKct adenovirus infection of vascular smooth muscle is capable of significantly diminishing neointimal proliferation after angioplasty. Therefore, further investigation is warranted to determine whether inhibition of βARK1 activity and sequestration of Gβγ via an adenovirus that encodes the βARKct transgene might be a useful clinical tool for the treatment of cardiovascular pathologies.  相似文献   

10.
A study has been made in the chick of the stereostructural requirements of A-ring-functionalized vitamin D analogs which elicit vitamin D3 and 1,25-(OH)2D3-dependent biological responses of intestinal calcium absorption (ICA) and bone calcium mobilization (BCM). Ring expansion of vitamin D3 to produce (1S,4S), (1S,4R), or (1R,4S)-(7E)-1,4-dihydroxy-3-deoxy-A-homo-19-nor-9,10-secocholesta-5,7-dienes resulted in the loss of both ICA and BCM biological activity at dose levels of steroid of up to 650 nmol/0.1 kg birds. Accordingly the three A-homo analogs of vitamin D3 were assessed for their ability to inhibit or increase the ICA or BCM responses of D3 and 1,25-(OH)2D3. Only (1R,4S)-(7E)-diol-C, maintaining a cis-β,β-hydroxyl orientation showed antagonistic biological activity. Intraperitoneal doses (65–325 nmol) of diol-C administered in conjunction with D3 (0.8–3.25 nmol) inhibited the BCM responses selectively and had no effect on the ICA response. Doses of analog-C (16.3-3.25 nmol) injected before and after the active hormone 1,25-(OH)2D3 (0.13–01.30 nmol) stimulated the ICA response of the latter above its normal levels (a synergistic response) when administered alone.  相似文献   

11.
Experiments were conducted to determine why 10,10-difluoro, 13-dehydroprostacyclin (DF2-PGI2) has a long vascular relexant activity but like PGI2 hads a short duration of effect . DF2-PGI2 produced depressor responses in anesthetized dogs which were not affected by nephrectomy suggesting that the kidney was not responsible for the termination of action. DF2-PGI2 given intravenously or into the ascending oarta produced depressor responses of a similar magnitude but injection of the same doses into the hepatic portal circulation resulted in a large attenuation of responses. The data suggest hepatitic, but not pulmonary, metabolism of DF2-PGI2. Injection or infusion of PGI2 and DF2-PGI2 into the hindlimb circulation caused vasodilation of a similar duration suggesting diffusion from tissue sites as another mechanims of termination of action.  相似文献   

12.
The carotid arterial blood pressure and heart rate responses to intravenous injections of substance P, neurotensin and bombesin were compared in anaesthetized rats. In rats anaesthetized with urethane neurotensin produced only a fall in blood pressure but in rats anaesthetized with sodium thiobutabarbitone, the fall was preceded by a transient rise in blood pressure. The reason for the different responses to neurotensin with the two anaesthetics was not investigated. The hypotensive effect of neurotensin observed with both anaesthetics was abolished by mepyramine and therefore appeared to be mediated by action on H1 receptors either of neurotensin directly or of histamine released. On the other hand, catecholamines might be implicated in the pressor response to neurotensin observed in rats anaesthetized with sodium thiobutabarbitone since it was reduced by phentolamine and hexamethonium. Low doses of substance P produced a depressor response which was not inhibited by the antagonists tested. At higher doses marked tachycardia occurred and the depressor response was less and was often followed by a pressor response. The tachycardia was abolished by propranolol but not by cervical cord section or by hexamethonium. Bombesin produced a pressor response which was unaffected by hexamethonium but was reversed to depressor by phentolamine. This depressor response to bombesin was abolished by propranolol. It was concluded that substance P produced a depressor response by action on its own specific receptors and tachycardia by catecholamine release whereas neurotensin and bombesin produced cardiovascular actions which were mediated entirely by amine release.  相似文献   

13.
Our previous studies showed that immunization with recombinant paramyosin from Trichinella spiralis (rTs-Pmy) formulated with Freund’s adjuvant significantly reduced larval burden in mice after T. spiralis larval challenge. Since Freund’s adjuvant is toxic and not a suitable adjuvant for clinical vaccine trials, we evaluated the ability of the adjuvants Montanide ISA206 and ISA720 to stimulate immune responses during rTs-Pmy immunization and to enhance protective immunity. The results revealed that immunization of BALB/c mice with rTs-Pmy formulated with either ISA206 or ISA720 triggered Th1 and Th2 immune responses similar to those produced by the conventional Freund’s adjuvant formulation and also provided a similar level of protection against T. spiralis larval challenge. This indicates that the recombinant Ts-Pmy formulated with Montanide ISA206 or ISA720 may be an effective and safety vaccine strategy for trichinellosis.  相似文献   

14.
Prostacyclin (PGI2), prostaglandin E2 (PGE2) and prostaglandin F2∝ (PGF2∝) were tested here in unanesthetized male Sprague-Dawley rats for their effects on the cardiovascular system as mediated by the Central nervous system. Cannulae were chronically implanted into the third cerebral ventricle, femoral arteries and femoral veins of rats. Both PGE2 and PGF2∝ induced increased arterial blood pressure and tachycardia by an action on the central nervous system. The changes seen with PGE2 were larger than those observed with PGF2∝. Only transient depressor effects were seen with PGI2 and these changes appeared to be due to the leakage of the substance into the peripheral vascular system.  相似文献   

15.
The effects of 6-keto-PGE1 on vascular resistance and vascular responses to sympathetic nerve stimulation and vasoconstrictor hormones were investigated in the feline mesenteric vascular bed. Infusions of 6-keto-PGE1 into the superior mesenteric artery dilated the mesenteric vascular bed and markedly inhibited vasoconstrictor responses to sympathetic nerve stimulation, norepinephrine and angiotensin II. The effects of 6-keto-PGE1 and PGE1 on vascular resistance and vasoconstrictor responses were quite similar and both substances inhibited responses to nerve stimulation and pressor hormones in a reversible manner. Responses to nerve stimulation, norepinephrine and angiotensin II were inhibited to a similar extent during infusion of 6-keto-PGE1 and PGE1. Results of these studies suggest that 6-keto-PGE1, a newly identified prostaglandin metabolite, and PGE1 possess the ability to inhibit the vasconstrictor effects of sympathetic nerve stimulation and pressor hormones by a nonspecific action on vascular smooth muscle in the feline small intestine.  相似文献   

16.
Chronic ethanol consumption is a risk factor for cardiovascular diseases. We studied whether NAD(P)H oxidase-derived reactive oxygen species (ROS) play a role in ethanol-induced hypertension, vascular dysfunction, and protein expression in resistance arteries. Male Wistar rats were treated with ethanol (20 %?v/v) for 6 weeks. Ethanol treatment increased blood pressure and decreased acetylcholine-induced relaxation in the rat mesenteric arterial bed (MAB). These responses were attenuated by apocynin (30 mg/kg/day; p.o. gavage). Ethanol consumption increased superoxide anion (O2 ?) generation and decreased nitrate/nitrite (NO x ) concentration in the rat MAB and apocynin prevented these responses. Conversely, ethanol did not affect the concentration of hydrogen peroxide (H2O2) and reduced glutathione (GSH) or the activity of superoxide dismutase (SOD) and catalase (CAT) in the rat MAB. Ethanol increased interleukin (IL)-10 levels in the rat MAB but did not affect the levels of tumor necrosis factor (TNF)-α, IL-6, or IL-1β. Ethanol increased the expression of Nox2 and the phosphorylation of SAPK/JNK, but reduced eNOS expression in the rat MAB. Apocynin prevented these responses. However, ethanol treatment did not affect the expression of Nox1, Nox4, p38MAPK, ERK1/2, or SAPK/JNK in the rat MAB. Ethanol increased plasma levels of TBARS, TNF-α, IL-6, IL-1β, and IL-10, whereas it decreased NO x levels. The major finding of our study is that NAD(P)H oxidase-derived ROS play a role on ethanol-induced hypertension and endothelial dysfunction in resistance arteries. Moreover, ethanol consumption affects the expression and phosphorylation of proteins that regulate vascular function and NAD(P)H oxidase-derived ROS play a role in such responses.  相似文献   

17.
Many intracellular pathogens evade the innate immune response in order to survive and proliferate within infected cells. We show that Porphyromonas gingivalis, an intracellular opportunistic pathogen, uses a nucleoside-diphosphate kinase (NDK) homolog to inhibit innate immune responses due to stimulation by extracellular ATP, which acts as a danger signal that binds to P2X7 receptors and induces activation of an inflammasome and caspase-1. Thus, infection of gingival epithelial cells (GECs) with wild-type P. gingivalis results in inhibition of ATP-induced caspase-1 activation. However, ndk-deficient P. gingivalis is less effective than wild-type P. gingivalis in reducing ATP-mediated caspase-1 activation and secretion of the pro-inflammatory cytokine, IL-1β, from infected GECs. Furthermore, P. gingivalis NDK modulates release of high-mobility group protein B1 (HMGB1), a pro-inflammatory danger signal, which remains associated with chromatin in healthy cells. Unexpectedly, infection with either wild-type or ndk-deficient P. gingivalis causes release of HMGB1 from the nucleus to the cytosol. But HMGB1 is released to the extracellular space when uninfected GECs are further stimulated with ATP, and there is more HMGB1 released from the cells when ATP-treated cells are infected with ndk-deficient mutant than wild-type P. gingivalis. Our results reveal that NDK plays a significant role in inhibiting P2X7-dependent inflammasome activation and HMGB1 release from infected GECs.  相似文献   

18.
Enterotoxigenic Escherichia coli and Vibrio cholerae are well known causative agents of severe diarrheal diseases. Both pathogens produce AB5 toxins, with one enzymatically active A-subunit and a pentamer of receptor-binding B-subunits. The primary receptor for both B-subunits is the GM1 ganglioside (Galβ3GalNAcβ4(NeuAcα3)Galβ4GlcβCer), but the B-subunits from porcine isolates of E. coli also bind neolacto-(Galβ4GlcNAcβ-)terminated glycoconjugates and the B-subunits from human isolates of E. coli (hLTB) have affinity for blood group A type 2-(GalNAcα3(Fucα2)Galβ4GlcNAcβ-)terminated glycoconjugates.  相似文献   

19.
Summary Cardiovascular responses to electrical stimulation of the cut central end of the recurrent laryngeal nerve (rLN) were recorded in 19 conscious toads (Bufo marinus). Low intensity stimulation of the rLN (3.4±0.5 V, 1 ms, 10 Hz) elicited a slow 18–22% fall in heart rate and systolic and diastolic aortic arterial blood pressures (N=18), but had little or no effect upon ventilation (N=6). This low threshold depressor response (LTDR) was considered to represent the expression of the previously demonstrated pulmocutaneous baroreflex. Bilateral stimulation of the rLNs elicited greater LTDRs than did either left or right unilateral rLN stimulation. Blood pressure and heart rate responses to bilateral stimulation were 69–77% of the sum of responses to unilateral stimulation, and the mean summation was significant for the reduction in heart rate. Stimulus intensities of >4.7±0.7 V caused an immediate cessation of cardiac activity for up to 6.5±1.3 s (N=17) and a concomitant apnoea (N=6), which were followed by a lesser bradycardia and hypotension. This response was termed a high threshold depressor response (HTDR). During continued stimulation at intensities of >9.1±1.4 V, aortic blood pressure (Pa) and ventilation were rapidly restored, and aortic blood pressure continued to rise above control values (N=14). In some cases this high threshold pressor response (HTPR) was associated with an increase in heart rate. All responses to rLN stimulation were abolished by pithing (N=9) or by pentobarbital (40 mg/kg, i.p.,N=4), but LTDS and HTPRs could be elicited in urethanized (1.5–2.0 g/kg,N=4) toads.During depressor responses, aortic arterial resistance fell by 18% in 18 of 20 trials in 5 toads, whereas pulmocutaneous arterial resistance increased by 76% in 12 of 15 trials in 4 toads. During the HTPR, aortic arterial resistance increased 40%, while pulmocutaneous arterial resistance remained unchanged. We suggest that depressor responses may actively redistribute blood flow from the pulmocutaneous to the aortic circulation, whereas the reverse should occur during HTPRs.Abbreviations HTDR high threshold depressor response - HTPR high threshold pressor response - rLN recurrent laryngeal nerve - LTDR low threshold depressor response - Pa aortic blood pressure - PCA pulmocutaneous artery - Pd diastolic aortic pressure - Ppca pulmocutaneous blood pressure - PRU peripheral resistance unit - Ps systolic aortic pressure - Pv venous blood pressure - Ra aortic arterial resistance - Rpca pulmocutaneous arterial resistance  相似文献   

20.
Amphibian pulmonary and systemic vascular circuits are arranged in parallel, with potentially important consequences for resistance (R) to blood flow. The contribution of the parallel anatomic arrangement to total vascular R (R T), independent of blood viscosity, is unknown. We measured pulmonary (R P) and systemic (R S) vascular R with an in situ Ringer’s solution perfusion technique using anesthetized anuran and urodele species to determine: (1) relative contributions of vascular anatomy and blood viscosity to R T; (2) distensibility index (%Δ flow kPa?1) of the pulmonary and systemic vascular circuits; and (3) interspecific correlates of variation in these parameters with red blood cell size, cardiac power output, and aerobic capacities. R P was lower than R S in anurans, while R P of the urodeles was greater than R S and significantly greater than anuran R P. Anuran R T was lowest and did not vary interspecifically, whereas urodele R T was significantly greater than anuran, and varied interspecifically. Pulmonary and systemic circuit distensibility differences may explain cardiac shunt patterns in toads with changes in cardiac output from rest to activity. When blood viscosity was taken into account, vascular resistance accounted for about 25 % of R T while blood viscosity accounted for the remaining 75 %. Owing to lower R T, terrestrial anuran species required lower cardiac power outputs when moving fluid through their vasculature compared to aquatic species. These results indicate that physical characteristics of the vasculature can account for interspecific differences in cardiovascular physiology and suggest a co-evolution of cardiac and vascular anatomy among amphibians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号