首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
J Papkoff  I M Verma  T Hunter 《Cell》1982,29(2):417-426
We identified, in cells transformed by Moloney murine sarcoma virus (M-MuSV clone 124), a protein encoded by the M-MuSV transforming gene, v-mos. An antiserum against a synthetic peptide corresponding to the C terminus of a protein predicted from the v-mos nucleotide sequence specifically recognizes a protein doublet of approximately 37,000 daltons from 35S-methionine-labeled M-MuSV 124-transformed producer cells. By peptide mapping, this protein is almost identical to the 37 kd in vitro translation product from the M-MuSV v-mos gene. Immunoprecipitates from 32P-labeled cells contain a single v-mos-specific phosphoprotein, which has at least six sites of phosphorylation containing phosphoserine. Pulse-chase experiments show that the lower band in the 35S-methionine-labeled doublet is the primary translation product, which is modified, probably by phosphorylation, to yield the upper band. A similar mos protein is immunoprecipitated from HT1-MuSV-transformed cells, but not from uninfected NIH/3T3 cells. These mos proteins are present at very low levels in transformed cell lines. Cells acutely infected with M-MuSV 124, however, transiently contain much higher levels of the mos protein. These high levels coincide with extensive cell mortality.  相似文献   

2.
The molecular weights of the large genomic RNAs from Rous sarcoma and Moloney murine leukemia viruses were determined by a combination of sedimentation coefficients and retardation coefficients from gel electrophoresis. Six RNA standards, ranging from 0.7 X 10(6) to 5.3 X 10(6) daltons, were employed. Studies in the presence of varying concentrations of Mg2+ showed that the method provided valid molecular weights for RNAs of differing amounts of ordered structure. The molecular weight (X 10(-6)) of the high molecular weight RNA complexe from Rous sarcoma virus was 7.6 (+/-0.3) and from murine leukemia virus was 6.9 (+/-0.3). The molecular weights (X 10 (-6) of their Subunits were 3.3 (+/-0.1) and 2.8 (+/-0.2), respectively. Hence, the large complexes consisted of two, not three or more, subunits plus small associated RNAs. The high molecular weight RNA from cloned Rous sarcoma virus was heterogenous in molecular weight although the apparent molecular radius was constant; stuides were performed on subfractions of the RNA as well as on RNA from virus harvested at various time intervals. The preparations with lowest molecular weight approached a mass equal to twice that of the subunit, with hydrodynamic properties approaching those expected of normal single-stranded RNA.  相似文献   

3.
The Moloney murine sarcoma-leukemia virus [M-MSV (MuLV)], propagated at high multiplicity of infection (MOI), was demonstrated previously to contain a native genome mass of 4 X 10(6) daltons as contrasted to a mass of 7 X 10(6) daltons for Moloney murine leukemia virus (M-MuLV). The 4 X 10(6)-dalton classof RNA from M-MSV (MuLV) was examined for base sequence homology with DNA complementary to the 7 X 10(6)-dalton M-MuLV RNA genome. Approximately 86% of the M-MSV (MuLV) was protected from RNase digestion by hybridization, whereas 95% of M-MuLV was protected under identical conditions. These results indicate that the small RNA class of high-MOI M-MSV (MuLV) contains little (perhaps 10%) genetic information not present in M-MuLV. Virtually all of the 1.8 X 10(6)-dalton subunits of M-MSV (MuLV) RNA contained regions of poly(A) since 94% of the RNA bound to oligo(dT) cellulose in 0.5 M KCl. This suggests that the formation of the 1.8 X 10(6)-dalton subunits occurs before their packaging into virions and does not result from hydrolysis of intact 3.5 X 10(6)-dalton subunits by a virion-associated nuclease.  相似文献   

4.
Abstract. Cell proliferation kinetics of the sarcoma induced by Moloney virus was studied in newborn Swiss OFl mice.
After in vivo injection of tritiated thymidine, followed by autoradiography, it was shown that the majority of cells were actively proliferating (labelling index; 31%, growth fraction 78%). The mean cell cycle was 16 hr and cell loss was relatively low (cell loss factor 48%). The study of tumour specific activity with time after a single [ in vivo ] injection of [3H]dR or [125I]UdR did not demonstrate the same degree of cell loss as that calculated by autoradiography. This result is consistent with a massive reutilization of radioactivity released by normal tissues.  相似文献   

5.
6.
The myeloproliferative sarcoma virus (MPSV) was derived by passage of Moloney sarcoma virus (Mo-MuSV) in adult mice. Mo-MuSV variants transform fibroblasts. However, MPSV also affects erythroid, myeloid, and hematopoietic stem cells. The MPSV proviral genome, two temperature-sensitive mutants derived from it, Mo-MuSV variant M1, and Moloney murine leukemia virus (Mo-MuLV) were compared by heteroduplex mapping. MPSV wild type was found to have 1 kilobase pair deleted from the pol gene and to contain v-mos-related sequences. The 3' end of MPSV, including the oncogene-helper junctions, the v-mos gene, and the 3' long terminal repeat, was sequenced and compared with sequences of Mo-MuLV, MSV-124, and the mouse oncogene c-mos. From these data, MPSV appears to be either closely related to the original Mo-MuSV or an independent recombinant of Mo-MuLV and c-mos. Five possible explanations of the altered specificity of MPSV are considered. (i) The MPSV mos protein has properties inherent in c-mos but lost by other Mo-MuSV mos proteins. (ii) The MPSV mos protein has altered characteristics due to amino acid changes. (iii) Due to a frameshift, MPSV codes for a mos protein truncated at the amino terminal and also a novel peptide. (iv) A second novel peptide may be encoded from the 3' env region. (v) MPSV has long terminal repeats and an enhancer sequence more like Mo-MuLV than Mo-MuSV, with a consequently altered target cell specificity.  相似文献   

7.
The gene products of Gazdar murine sarcoma virus (Gz-MuSV) were identified by in vitro translation of Gz-MuSV virion RNA. An overlapping set of proteins with approximate molecular weights of 37,000 (37K), 33K, 24K, and 18K were synthesized from the transforming gene of Gz-MuSV, v-mosGz. In addition, Gz-MuSV-specific RNA directed the in vitro synthesis of a 62K gag gene protein and a 37.5K env gene-related product. The Gz-MuSV-specific in vitro translation products were compared with the in vitro translation products of M-MuSV 124, an independent isolate with a similar v-mos gene. This analysis showed that the 62K Gz-MuSV gag gene protein and the 37K, 33K, 24K, and 18K v-mosGz proteins were almost identical to the M-MuSV 124 62K (gag) and 37K, 33K, 24K, and 18K (v-mosMo) proteins that we previously identified and characterized. The 37.5K env gene product from Gz-MuSV does not have a correlate in the M-MuSV 124 translation products. These results were analyzed in the context of expectations based on similarities and differences in genetic organization of these two viral genomes.  相似文献   

8.
9.
ts110 Moloney murine sarcoma virus (Mo-MuSV)-nonproductively infected cells (6m2) have a transformed phenotype at 28 to 33 degrees C and a normal phenotype at 39 degrees C. At temperatures permissive for transformation, 6m2 cells contain P58gag produced from the 4.0-kilobase (kb) viral RNA genome and P85gag-mos translated from a 3.5-kb spliced mRNA. At 39 degrees C, only the 4.0-kb RNA and its product P58gag are detected. Two temperature-sensitive defects have been observed in ts110-infected 6m2 cells: (i) the splicing of the 4.0-kb RNA to the 3.5-kb RNA; and (ii) the thermolability of P85gag-mos and its kinase activity relative to the wild-type revertant protein, termed P100gag-mos (R.B. Arlinghaus, J. Gen. Virol. 66:1845-1853, 1985). In the present study, we examined the mos gene products of two cell lines (204-2F6 and 204-2F8) obtained by infection of normal rat kidney cells with ts110 Mo-MuSV as a simian sarcoma-associated virus pseudotype to see whether the temperature-sensitive splicing defect could be transferred by viral infection. Southern blot analysis of these two cell lines showed that viral DNAs containing restriction fragments from cellular DNA are different from those in 6m2 cells, indicating that 204-2F6 and 204-2F8 cells have different ts110 provirus integration sites from those of 6m2 cells. Northern blots, S1 mapping analyses, and immunoprecipitation experiments showed unequivocally that the splicing defect of ts110 Mo-MuSV is virus encoded and is independent of host cell factors.  相似文献   

10.
11.
Heteroduplex analysis of the RNA isolated from purified virions of clone 3 Moloney murine sarcoma virus (M-MSV) hybridized to cDNA's from Moloney murine leukemia virus (M-MLV) and clone 124 M-MSV shows that the main physical component of clone 3 RNA is missing all or most of the 1.5-kilobase (kb) clone 124 M-MSV specific sequence denoted beta s (S. Hu et al. Cell 10:469--477, 1977). This sequence is either deleted in clone 3 RNA or substituted by a very short (0.3-kilobase) sequence. In other respects, clone 3 and clone 124 RNAs show the same heteroduplex structure relative to M-MLV. Since beta s is believed to contain the src gene(s) of clone 124 RNA, this result leaves as an unresolved question the nature of the src gene(s) of the clone 3 M-MSV RNA complex.  相似文献   

12.
Cells transformed by Rous sarcoma virus release transforming growth factors   总被引:3,自引:0,他引:3  
Chicken embryo fibroblasts and hamster BHK cells transformed by Rous sarcoma virus (RSV) release in their culture media growth factors which enhance markedly anchorage-independent colony formation in gelified medium, at the restrictive temperature (41 degrees 5 C), of chicken embryo fibroblasts (CEF) infected by RSV mutants with a ts mutation of the src gene. This action is not observed with uninfected CEF, and, therefore, appears to require some expression of the viral src gene in the target cells. The enhancing factors are proteins related to the family of the transforming growth factors (TGFs) by their molecular weight (about 20 kd), their heat and acid resistance, and their sensitivity to dithiothreitol. They do not compete with 125I EGF for binding on the EGF receptors of the membrane of A431 cells. As chicken embryo fibroblasts are devoid of EGF receptors, their activity is not potentiated by EGF.  相似文献   

13.
The bovine papillomavirus (BPV-1), Moloney murine sarcoma virus (MoMuSV) and simian virus 40(SV40) genomes have been shown to contain sequences termed 'enhancers' which activate the expression of linked genes. DNA fragments containing these three enhancers have been inserted into recombinant plasmids upstream from the herpes simplex virus thymidine kinase (tk) gene, and their effect on tk expression monitored. Two types of assay have been used. Firstly, the ability of recombinant plasmids to transform TK- recipient cells to a TK+ phenotype was measured. Secondly, the amount of tk-specific RNA and TK enzyme activity transiently expressed after DNA transfection was determined. Both types of assay gave similar results. The enhancers increased tk gene expression by regulating the amount of full length tk mRNA present shortly after transfection independent of gene copy number. Furthermore, marked species specificity in the relative efficiencies of different enhancers was observed, including that of the BPV-1 enhancer for the first time. The MoMuSV enhancer showed preference for murine fibroblasts, while the papillomavirus enhancer showed a marked preference for bovine cells. In contrast, the SV40 enhancer gave the same relative increase in tk gene expression in the murine, rat, bovine and human cells tested.  相似文献   

14.
15.
16.
17.
18.
19.
Antibody to a synthetic peptide (anti-C3 serum) with the predicted sequence of the C terminus of the Moloney murine sarcoma virus (strain 124) v-mos gene was used in immunoprecipitation experiments with cytoplasmic extracts of a clone of NRK cells infected with ts110 Moloney murine sarcoma virus, termed 6m2 cells. ts110 Moloney murine sarcoma virus codes for two viral proteins of 85,000 and 58,000 Mr, termed P85 and P58, respectively, in nonproducer 6m2 cells maintained at 33°C. Anti-C3 serum specifically recognized [3H]leucine-labeled P85, but not P58, from infected cells maintained at 33°C, whereas antiserum prepared against murine leukemia virus p12 recognized both proteins. Normal serum and anti-C3 serum pretreated with excess C3 peptide did not precipitate P85. Immunoprecipitation experiments after metabolic labeling of 6m2 cells with 32Pi showed that P85 is phosphorylated. Both anti-C3 and anti-p12 sera specifically detected 32P-labeled P85. Cell-free translation of ts110 murine sarcoma virus/murine lukemia virus RNA produces P85, P58, and helper virus protein Pr63gag. Anti-C3 serum specifically precipitated P85 but neither P58 nor Pr63gag. We conclude from these studies that P85 is a product of both the gag and mos genes of ts110 murine sarcoma virus, and, therefore, it is referred to as P85gag-mos. We have not detected any other v-mos gene product in ts110-infected cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号