首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Amelogenins, the major protein component of the mineralizing enamel extracellular matrix, are critical for normal enamel formation as documented in the linkage studies of a group of inherited disorders, with defective enamel formation, called Amelogenesis imperfecta. Recent cases of Amelogenesis imperfecta include mutations that resulted in truncated amelogenin protein lacking the hydrophilic C-terminal amino acids. Current advances in knowledge on amelogenin structure, nanospheres assembly and their effects on crystal growth have supported the hypothesis that amelogenin nanospheres provide the organized microstructure for the initiation and modulated growth of enamel apatite crystals. In order to evaluate the function of the conserved hydrophilic C-terminal telopeptide during enamel biomineralization, the present study was designed to analyze the self-assembly and apatite binding behavior of amelogenin proteins and their isoforms lacking the hydrophilic C-terminal. We applied dynamic light scattering to investigate the size distribution of amelogenin nanospheres formed by a series of native and recombinant proteins. In addition, the apatite binding properties of these amelogenins were examined using commercially available hydroxyapatite crystals. Amelogenins lacking the carboxy-terminal (native P161 and recombinant rM166) formed larger nanospheres than those formed by their full-length precursors: native P173 and recombinant rM179. These data suggest that after removal of the hydrophilic carboxy-terminal segment further association of the nanospheres takes place through hydrophobic interactions. The affinity of amelogenins lacking the carboxy-terminal regions to apatite crystals was significantly lower than their parent amelogenins. These structure-functional analyses suggest that the hydrophilic carboxy-terminal plays critical functional roles in mineralization of enamel and that the lack of this segment causes abnormal mineralization.  相似文献   

2.
A hallmark of biological systems is a reliance on protein assemblies to perform complex functions. We have focused attention on mammalian enamel formation because it relies on a self-assembling protein complex to direct mineral habit. The principle protein of enamel is amelogenin, a 180-amino acid hydrophobic protein that self-assembles to form nanospheres. We have used independent technical methods, consisting of the yeast two-hybrid (Y2H) assay and surface plasmon resonance (SPR), to demonstrate the importance of amelogenin self-assembly domains. In addition, we have analyzed mutations in amelogenin observed in patients with amelogenesis imperfecta who demonstrate defects in enamel formation. Assessments of self-assembly of these mutant amelogenins by either SPR or Y2H assay yield concordant data. These data support the conclusion that the amelogenin amino-terminal self-assembly domain is essential to the creation of an enamel extracellular organic matrix capable of directing mineral formation. It also suggests that a pathway through which point mutations in the amelogenin protein can adversely impact on the formation of the enamel organ is by disturbing self-assembly of the organic matrix. These data support the utilization of the Y2H assay to search for protein interactions among extracellular matrix proteins that contribute to biomineralization and provide functional information on protein-protein and protein-mineral interactions.  相似文献   

3.
Amelogenin proteins, the principal components of the developing dental enamel matrix, self-assemble to form nanosphere structures that are believed to function as structural components directly involved in the matrix mediated enamel biomineralization. The self-assembly behavior of a recombinant murine amelogenin (rM179) was investigated by atomic force microscopy (AFM) for further understanding the roles of amelogenin proteins in dental enamel biomineralization. Recombinant rM179 amelogenin was dissolved in a pH 7.4 Tris-HCl buffer at concentrations ranging from 12.5 to 300 microg/ml. The solutions were adsorbed on mica, fixed with Karnovsky fixative and rinsed thoroughly with water for atomic force microscopy (AFM). At low concentrations (12.5-50 microg/ml), nanospheres with diameters varying from 7 to 53 nm were identified while at concentrations ranging between 100-300 microg/ml the size distribution was significantly narrowed to be steadily between 10 and 25 nm in diameter. These nanospheres were observed to be the basic building blocks of both engineered rM179 gels and of the developing enamel extracellular matrix. The stable 15-20-nm nanosphere structures generated in the presence of high concentrations of amelogenins were postulated to be of great importance in facilitating the highly organized ultrastructural microenvironment required for the formation of initial enamel apatite crystallites.  相似文献   

4.
Self-assembly of the extracellular matrix protein amelogenin is believed to play an essential role in regulating the growth and organization of enamel crystals during enamel formation. The full-length amelogenin uniquely regulates the growth, shape, and arrangement of enamel crystals. Protein hydrolysis will ultimately facilitate a tissue with high mineral content. Protein processing is however highly specific suggesting a functional role of the cleaved amelogenins in enamel maturation. Here we hypothesize that the cooperative self-assembly of the recombinant full-length amelogenin 25 kDa and the 23 kDa proteolytic cleavage product is a function of pH, mixing ratio and incubation time and is associated with the isoelectric point of the protein. Self-assembly of amelogenin into nanospheres which increased in size with increasing pH was observed by atomic force microscopy. Elongated structures of about 100 nm length and 25 nm width formed over several days for amelogenin 25 and 23 kDa predominantly at pH-values of 6.5 and 7.5, respectively. When both proteins 25 and 23 kDa were mixed, self-assembled nanostrings of 200–300 nm length consisting of fused nanospheres were obtained at pH around 7.0 within 24 h. The protein nanostrings formed links over time and a continuous mesh was obtained after 7 days. Electrical conductivity data also showed gradual changes when both amelogenins were mixed in solutions supporting the idea that elongated structures form over extended periods of time. We propose that due to the difference in the isoelectric point, self-assembled nanospheres composed of 23 or 25 kDa amelogenin have opposite ionic charges at pH-values around 7.0 and thus experience ionic attraction that enables cooperative self-assembly.  相似文献   

5.
The matrix-mediated enamel biomineralization involves secretion of the enamel specific amelogenin proteins that through self-assembly into nanosphere structures provide the framework within which the initial enamel crystallites are formed. During enamel mineralization, amelogenin proteins are processed by tooth-specific proteinases. The aim of this study was to explore the factors that affect the activity of enamel proteases to process amelogenins. Two factors including amelogenin self-assembly and enzyme specificity are considered. We applied a limited proteolysis approach, combined with mass spectrometry, in order to determine the surface accessibility of conserved domains of amelogenin assemblies. A series of commercially available proteinases as well as a recombinant enamelysin were used, and their proteolytic actions on recombinant amelogenin were examined under controlled and limited conditions. The N-terminal region of the recombinant mouse amelogenin rM179 was found to be more accessible to tryptic digest than the C-terminal region. The endoproteinase Glu-C cleaved amelogenin at both the N-terminal (E18/V) and C-terminal (E178/V) sites. Chymotrypsin cleaved amelogenin at both the carboxy- (F151/S) and amino-terminal (W25/Y) regions. Interestingly, the peptide bond F/S152 was also recognized by the action of enamelysin on recombinant mouse amelogenin whereas thermolysin cleaved the S152/M153 peptide bond in addition to T63/L64 and I159/L160 and M29/I30 bonds. It was then concluded that regions at both the carboxy- and amino-terminal were exposed on the surface of amelogenin nanospheres when the N-terminal 17 amino acid residues were proposed to be protected from proteolysis, presumably as the result of their involvement in direct protein-protein interaction. Cleavage around the FSM locus occurred by recombinant enamelysin under limited conditions, in both mouse (F151/S152) and pig amelogenins (S148/M). Our in vitro observations on the limited proteolysis of amelogenin by enamelysin suggest that enamelysin cleaved amelogenin at the C-terminal region showing a preference of the enzyme to cleave the S/M and F/S bonds. The present limited proteolysis studies provided insight into the mechanisms of amelogenin degradation during amelogenesis.  相似文献   

6.
Proteins with predominantly hydrophobic character called amelogenins play a key role in the formation of the highly organized enamel tissue by forming nanospheres that interact with hydroxyapatite crystals. In the present investigation, we have studied the temperature and pH-dependent self-assembly of two recombinant mouse amelogenins, rM179 and rM166, the latter being an engineered version of the protein that lacks a 13 amino acid hydrophilic C-terminus. It has been postulated that this hydrophilic domain plays an important role in controlling the self-assembly behavior of rM179. By small-angle X-ray and neutron scattering, as well as by dynamic light scattering, we observed the onset of an aggregation of the rM179 protein nanospheres at pH 8. This behavior of the full-length recombinant protein is best explained by a core-shell model for the nanospheres, where hydrophilic and negatively charged side chains prevent the agglomeration of hydrophobic cores of the protein nanospheres at lower temperatures, while clusters consisting of several nanospheres start to form at elevated temperatures. In contrast, while capable of forming nanospheres, rM166 shows a very different aggregation behavior resulting in the formation of larger precipitates just above room temperature. These results, together with recent observations that rM179, unlike rM166, can regulate mineral organization in vitro, suggest that the aggregation of nanospheres of the full-length amelogenin rM179 is an important step in the self-assembly of the enamel matrix.  相似文献   

7.
We have applied optical waveguide lightmode spectroscopy combined with streaming potential measurements and Fourier-transformed infrared spectroscopy to investigate adsorption of amelogenin nanospheres onto polyelectrolytes. The long-term objective was to better understand the chemical nature of these assemblies and to gain further insight into the molecular mechanisms involved during self-assembly. It was found that monolayers of monomers and negatively charged nanospheres of a recombinant amelogenin (rM179) irreversibly adsorbed onto a positively charged polyelectrolyte multilayer films. On the basis of measurements performed at different temperatures, it was demonstrated that intermolecular interactions for the formation of nanospheres were not affected by their adsorption onto polyelectrolytes. Consecutive adsorption of nanospheres resulting in the formation of multilayer structures was possible by using cationic poly(l-lysine) as mediators. N-Acetyl-d-glucosamine (GlcNac) did not disturb the nanosphere-assembled protein's structure, and it only affected the adsorption of monomeric amelogenin. Infrared spectroscopy of adsorbed amelogenin revealed conformational differences between the monomeric and assembled forms of rM179. While there was a considerable amount of alpha-helices in the monomers, beta-turn and beta-sheet structures dominated the assembled proteins. Our work constitutes the first report on a structurally controlled in vitro buildup of an rM179 nanosphere monolayer-based matrix. Our data support the notion that amelogenin self-assembly is mostly driven by hydrophobic interactions and that amelogenin/PEM interactions are dominated by electrostatic forces. We suggest that similar forces can govern amelogenin interactions with non-amelogenins or the mineral phase during enamel biomineralization.  相似文献   

8.
Amelogenin self-assembles to form an extracellular protein matrix, which serves as a template for the continuously growing enamel apatite crystals. To gain further insight into the molecular mechanism of amelogenin nanosphere formation, we manipulated the interactions between amelogenin monomers by altering pH, temperature, and protein concentration to create isolated metastable amelogenin oligomers. Recombinant porcine amelogenins (rP172 and rP148) and three different mutants containing only a single tryptophan (Trp(161), Trp(45), and Trp(25)) were used. Dynamic light scattering and fluorescence studies demonstrated that oligomers were metastable and in constant equilibrium with monomers. Stable oligomers with an average hydrodynamic radius (R(H)) of 7.5 nm were observed at pH 5.5 between 4 and 10 mg · ml(-1). We did not find any evidence of a significant increase in folding upon self-association of the monomers into oligomers, indicating that they are disordered. Fluorescence experiments with single tryptophan amelogenins revealed that upon oligomerization the C terminus of amelogenin (around residue Trp(161)) is exposed at the surface of the oligomers, whereas the N-terminal region around Trp(25) and Trp(45) is involved in protein-protein interaction. The truncated rP148 formed similar but smaller oligomers, suggesting that the C terminus is not critical for amelogenin oligomerization. We propose a model for nanosphere formation via oligomers, and we predict that nanospheres will break up to form oligomers in mildly acidic environments via histidine protonation. We further suggest that oligomeric structures might be functional components during maturation of enamel apatite.  相似文献   

9.
Self-assembly of the extracellular matrix protein amelogenin is believed to play an essential role in regulating the growth and organization of enamel crystals during enamel formation. This study examines the effect of temperature and pH on amelogenin self-assembly under physiological pH conditions in vitro, using dynamic light scattering, turbidity measurements, and transmission electron microscopy. Full-length recombinant amelogenins from mouse (rM179) and pig (rP172) were investigated, along with proteolytic cleavage products (rM166 and native P148) lacking the hydrophilic C-terminus of parent molecules. Results indicated that the self-assembly of full-length amelogenin is primarily triggered by pH in the temperature range from 13 to 37 degrees C and not by temperature. Furthermore, very large assemblies of all proteins studied formed through the rearrangement of similarly sized nanospherical particles, although at different pH values: pH 7.7 (P148), pH 7.5 (rM166), pH 7.2 (rP172), and pH 7.2 (rM179). Structural differences were also observed. The full-length molecules formed apparently tightly connected elongated, high-aspect ratio assemblies comprised of small spheres, while the amelogenin cleavage products appeared as loosely associated spherical particles, suggesting that the hydrophilic C-terminus plays an essential role in higher-order amelogenin assembly. Hence, tightly controlled pH values during secretory amelogenesis may serve to regulate the functions of both full-length and cleaved amelogenins.  相似文献   

10.
Microstructures of an amelogenin gel matrix.   总被引:2,自引:0,他引:2  
The thermo-reversible transition (clear <--> opaque) of the amelogenin gel matrix, which has been known for some three decades, has now been clarified by microstructural investigations. A mixed amelogenin preparation extracted from porcine developing enamel matrix (containing "25K," 7.4%; "23K," 10.7%; "20K," 49.5%; and smaller peptides, 32.4%) was dissolved in dilute formic acid and reprecipitated by adjusting the pH to 6.8 with NaOH solution. Amelogenin gels were formed in vitro by sedimenting the precipitate in microcentrifuge tubes. The gels were fixed with Karnovsky fixative at 4 and 24 degrees C, which was found to preserve their corresponding clear (4 degrees C) and opaque (24 degrees C) states. Scanning electron microscopy, atomic force microscopy, and transmission electron microscopy were employed for the microstructural characterization of the fixed clear and opaque gels. The amelogenin gel matrix was observed to possess a hierarchical structure of quasi-spherical amelogenin nanospheres and their assemblies. The nanospheres of diameters 8-20 nm assemble to form small spherical assemblies of diameters 40-70 nm that further aggregated to form large spherical assemblies of 70-300 nm in diameter. In the clear gel, most of the large assemblies are smaller than 150 nm, and the nanospheres and assemblies are uniformly dispersed, allowing an even fluid distribution among them. In the opaque gel, however, numerous spherical fluid-filled spaces ranging from 0.3 to 7 microm in diameter were observed with the majority of the large assemblies sized 150-200 nm in diameter. These spaces presumably result from enhanced hydrophobic interactions among nanospheres and/or assemblies as the temperature increased. The high opacity of the opaque (24 degrees C) gel apparently arises from the presence of the numerous fluid-filled spaces observed compared to the low-temperature (4 degrees C) preparation. These observations suggest that the hydrophobic interactions among nanospheres and different orders of amelogenin assemblies are important in determining the structural integrity of the dental enamel matrix.  相似文献   

11.
The self-assembly of the predominant extracellular enamel matrix protein amelogenin plays an essential role in regulating the growth and organization of enamel mineral during early stages of dental enamel formation. The present study describes the effect of the phosphorylation of a single site on the full-length native porcine amelogenin P173 on self-assembly and on the regulation of spontaneous calcium phosphate formation in vitro. Studies were also conducted using recombinant non-phosphorylated (rP172) porcine amelogenin, along with the most abundant amelogenin cleavage product (P148) and its recombinant form (rP147). Amelogenin self-assembly was assessed using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Using these approaches, we have shown that self-assembly of each amelogenin is very sensitive to pH and appears to be affected by both hydrophilic and hydrophobic interactions. Furthermore, our results suggest that the phosphorylation of the full-length porcine amelogenin P173 has a small but potentially important effect on its higher-order self-assembly into chain-like structures under physiological conditions of pH, temperature, and ionic strength. Although phosphorylation has a subtle effect on the higher-order assembly of full-length amelogenin, native phosphorylated P173 was found to stabilize amorphous calcium phosphate for extended periods of time, in sharp contrast to previous findings using non-phosphorylated rP172. The biological relevance of these findings is discussed.  相似文献   

12.
Amelogenin is believed to be involved in controlling the formation of the highly anisotropic and ordered hydroxyapatite crystallites that form enamel. The adsorption behavior of amelogenin proteins onto substrates is very important because protein–surface interactions are critical to its function. We have previously used LRAP, a splice variant of amelogenin, as a model protein for the full-length amelogenin in solid-state NMR and neutron reflectivity studies at interfaces. In this work, we examined the adsorption behavior of LRAP in greater detail using model self-assembled monolayers containing COOH, CH3, and NH2 end groups as substrates. Dynamic light scattering (DLS) experiments indicated that LRAP in phosphate buffered saline and solutions containing low concentrations of calcium and phosphate consisted of aggregates of nanospheres. Null ellipsometry and atomic force microscopy (AFM) were used to study protein adsorption amounts and quaternary structures on the surfaces. Relatively high amounts of adsorption occurred onto the CH3 and NH2 surfaces from both buffer solutions. Adsorption was also promoted onto COOH surfaces only when calcium was present in the solutions suggesting an interaction that involves calcium bridging with the negatively charged C-terminus. The ellipsometry and AFM studies revealed that LRAP adsorbed onto the surfaces as small subnanosphere-sized structures such as monomers or dimers. We propose that the monomers/dimers were present in solution even though they were not detected by DLS or that they adsorbed onto the surfaces by disassembling or “shedding” from the nanospheres that are present in solution. This work reveals the importance of small subnanosphere-sized structures of LRAP at interfaces.  相似文献   

13.
To create a bioceramic with unique materials properties, biomineralization exploits cells to create a tissue-specific protein matrix to control the crystal habit, timing, and position of the mineral phase. The biomineralized covering of vertebrate teeth is enamel, a distinctive tissue of ectodermal origin that is collagen-free. In forming enamel, amelogenin is the abundant protein that undergoes self-assembly to contribute to a matrix that guides its own replacement by mineral. Conserved domains in amelogenin suggest their importance to biomineralization. We used gene targeting in mice to replace native amelogenin with one of two engineered amelogenins. Replacement changed enamel organization by altering protein-to-crystallite interactions and crystallite stacking while diminishing the ability of the ameloblast to interact with the matrix. These data demonstrate that ameloblasts must continuously interact with the developing matrix to provide amelogenin-specific protein to protein, protein to mineral, and protein to membrane interactions critical to biomineralization and enamel architecture while suggesting that mutations within conserved amelogenin domains could account for enamel variations preserved in the fossil record.  相似文献   

14.
Enamel formation is a powerful model for the study of biomineralization. A key feature common to all biomineralizing systems is their dependency upon the biosynthesis of an extracellular organic matrix that is competent to direct the formation of the subsequent mineral phase. The major organic component of forming mouse enamel is the 180-amino-acid amelogenin protein (M180), whose ability to undergo self-assembly is believed to contribute to biomineralization of vertebrate enamel. Two recently defined domains (A and B) within amelogenin appear essential for this self-assembly. The significance of these two domains has been demonstrated previously by the yeast two-hybrid system, atomic force microscopy, and dynamic light scattering. Transgenic animals were used to test the hypothesis that the self-assembly domains identified with in vitro model systems also operate in vivo. Transgenic animals bearing either a domain-A-deleted or domain-B-deleted amelogenin transgene expressed the altered amelogenin exclusively in ameloblasts. This altered amelogenin participates in the formation an organic enamel extracellular matrix and, in turn, this matrix is defective in its ability to direct enamel mineralization. At the nanoscale level, the forming matrix adjacent to the secretory face of the ameloblast shows alteration in the size of the amelogenin nanospheres for either transgenic animal line. At the mesoscale level of enamel structural hierarchy, 6-week-old enamel exhibits defects in enamel rod organization due to perturbed organization of the precursor organic matrix. These studies reflect the critical dependency of amelogenin self-assembly in forming a competent enamel organic matrix and that alterations to the matrix are reflected as defects in the structural organization of enamel.  相似文献   

15.
The amelogenin gene contributes the majority of tooth enamel proteins and plays a significant role in enamel biomineralization. While several mammalian and reptilian amelogenins have been cloned and sequenced, basal vertebrate amelogenin evolution remains to be understood. In order to start elucidating the structure and function of amelogenins in the evolution of enamel, the leopard frog (Rana pipiens) was used as a model. Tissues from Rana pipiens teeth were analyzed for enamel structure and RNA extracts were processed for sequence analysis. Electron microscopy revealed that Rana pipiens enamel contains long and parallel crystals similar to mammalian enamel, while immunoreactions confirmed the site-specific localization of cross-reactive amelogenins in Rana pipiens enamel. Sequencing of amelogenin PCR products revealed a 782bp cDNA with a 546-nucleotide coding sequence encoding 181 amino acids. The homology of the newly discovered Rana pipiens amelogenin nucleotide and amino acid sequence with the published mouse amelogenin was 38.6% and 45%, respectively. These findings report the first complete amelogenin cDNA sequence in amphibians and indicate a close homology between mammalian enamel formation and Rana pipiens enamel biomineralization.  相似文献   

16.
Recombinant murine amelogenins M179 and M166 were expressed in Escherichia coli and purified. The aggregation properties of these amelogenins have been investigated in aqueous solutions as well as acetonitrile-containing solutions using dynamic light scattering. Dynamic light scattering provides direct measurement of the translational diffusion coefficient and hydrodynamic radius, and of an estimate of the molecular weight. Polydispersity and statistical parameters of how to interpret the analysis are also provided. Amelogenin aggregation was examined in solutions of a range of pH, ionic strengths, and protein concentrations. It was shown that at pH 7.8–8 and ionic strength of 0.02–0.05M the M179 molecules form monodispersed aggregates with hydrodynamic radii ranging from 15 to 19 nm. Analysis of hydrodynamic radii and size distribution of M179 aggregates in acetonitrile-containing solvents compared to that in aqueous solutions indicated a primary role for hydrophobic interactions in the association process of amelogenin molecules to form aggregates. Comparison between the aggregates formed by M179 and M166, which lacks the hydrophilic carboxy-terminal 13 residue sequence of M179, suggested that the self-assembly of amelogenin molecules to form stable and monodisperse aggregates requires the presence of the hydrophilic carboxy-terminal sequence of M179. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
During enamel formation, the organic enamel protein matrix interacts with calcium phosphate minerals to form elongated, parallel, and bundled enamel apatite crystals of extraordinary hardness and biomechanical resilience. The enamel protein matrix consists of unique enamel proteins such as amelogenin, ameloblastin, and enamelin, which are secreted by highly specialized cells called ameloblasts. The ameloblasts also facilitate calcium and phosphate ion transport toward the enamel layer. Within ameloblasts, enamel proteins are transported as a polygonal matrix with 5 nm subunits in secretory vesicles. Upon expulsion from the ameloblasts, the enamel protein matrix is re-organized into 20 nm subunit compartments. Enamel matrix subunit compartment assembly and expansion coincide with C-terminal cleavage by the MMP20 enamel protease and N-terminal amelogenin self-assembly. Upon enamel crystal precipitation, the enamel protein phase is reconfigured to surround the elongating enamel crystals and facilitate their elongation in C-axis direction. At this stage of development, and upon further amelogenin cleavage, central and polyproline-rich fragments of the amelogenin molecule associate with the growing mineral crystals through a process termed “shedding”, while hexagonal apatite crystals fuse in longitudinal direction. Enamel protein sheath-coated enamel “dahlite” crystals continue to elongate until a dense bundle of parallel apatite crystals is formed, while the enamel matrix is continuously degraded by proteolytic enzymes. Together, these insights portrait enamel mineral nucleation and growth as a complex and dynamic set of interactions between enamel proteins and mineral ions that facilitate regularly seeded apatite growth and parallel enamel crystal elongation.  相似文献   

18.
19.
As the principal components of the developing tooth enamel matrix, amelogenins play a significant role in tooth enamel formation and organization. In order to elucidate the structure and function of amelogenins in the evolution of enamel, we have selected the Iguana iguana as a squamate model organism. Here we report the first complete squamate amelogenin sequence available as of yet and document unique features of Iguana amelogenins and enamel. Transmission electron microscopy documented randomly oriented Iguana enamel crystals during the elongation phase compared with organized enamel crystal patterns at comparable stages in mammals. Sequencing of PCR amplified products revealed a full-length I. iguana amelogenin cDNA containing 877 nucleotides with a 564 nucleotide coding sequence encoding 187 amino acids. The homologies of the newly discovered I. iguana amelogenin amino acid sequence with the published mouse, caiman (Palaeosuchus), and snake (Elaphe) amelogenin were 41.3%, 53.5%, and 55.5%, respectively. On Western blots one major protein with a molecular weight of 24 kDa, and two minor proteins with molecular weights of 28 and 13.5 kDa, respectively, were detected based on the cross-reactivity of antisera against recombinant Rana pipiens amelogenin proteins. Sequence analysis revealed a moderate sequence homology between mammalian and reptilian amelogenin genes. A significant alteration was the deletion of the hydrophilic GSP sequence from exon 3 in the mouse sequence resulting in a conversion to a hydrophobic region in Iguana. Together, these findings identified a novel amelogenin cDNA sequence in the squamate reptilian I. iguana and functional implications for the evolution of amelogenins and enamel in squamates.  相似文献   

20.
Collagen and amelogenin are two major extracellular organic matrix proteins of dentin and enamel, the mineralized tissues comprising a tooth crown. They both are present at the dentin-enamel boundary (DEB), a remarkably robust interface holding dentin and enamel together. It is believed that interactions of dentin and enamel protein assemblies regulate growth and structural organization of mineral crystals at the DEB, leading to a continuum at the molecular level between dentin and enamel organic and mineral phases. To gain insight into the mechanisms of the DEB formation and structural basis of its mechanical resiliency we have studied the interactions between collagen fibrils, amelogenin assemblies, and forming mineral in vitro, using electron microscopy. Our data indicate that collagen fibrils guide assembly of amelogenin into elongated chain or filament-like structures oriented along the long axes of the fibrils. We also show that the interactions between collagen fibrils and amelogenin-calcium phosphate mineral complexes lead to oriented deposition of elongated amorphous mineral particles along the fibril axes, triggering mineralization of the bulk of collagen fibril. The resulting structure was similar to the mineralized collagen fibrils found at the DEB, with arrays of smaller well organized crystals inside the collagen fibrils and bundles of larger crystals on the outside of the fibrils. These data suggest that interactions between collagen and amelogenin might play an important role in the formation of the DEB providing structural continuity between dentin and enamel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号