首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We describe the cranial ontogeny of an australidelphian marsupial, Dasyurus albopunctatus, using a combination of qualitative and quantitative approaches. We examined in detail qualitative morphological changes of just-weaned individuals as compared to old adults; specifically, changes in 31 morphological structures (e.g., processes, foramina) and 38 changes in cranial joints. We also interpreted growth-invariant structures in terms of their functional relevance. We performed a multivariate allometry analysis based on 14 cranial measurements taken from 31 specimens encompassing the entire postweaning period. Three variables (height of occipital plate, breadth of braincase, and height of mandible) showed the same allometric trends in D. albopunctatus and the three marsupial species studied previously in the same framework (Didelphis albiventris, Lutreolina crassicaudata, and Dromiciops gliroides). In addition, D. albopunctatus shared allometric trends in two variables (length of the upper postcanine row and length of the orbit) with the microbiotheriid D. gliroides. Most of the growth trends observed are interpreted as linked to the predominantly carnivorous dietary habit of adult D. albopunctatus. Because dasyuromorphians are most likely basal to the major Australasian radiation of marsupials, knowledge of ontogenetic changes in D. albopunctatus may shed light on the evolution of ontogeny in the highly diverse Australasian marsupial fauna.  相似文献   

2.
The Paucituberculata is an endemic group of South American marsupials, recorded from the early Cenozoic up to the present. In this report, the most comprehensive phylogenetic analysis of Paucituberculata to date is presented. Fifty‐seven terminal species were scored for 74 new and re‐examined characters. Homologies of dental characters used in previous systematic studies were critically reviewed to evaluate their inclusion in the analysis. Phylogenetic results corroborated two major paucituberculatan clades, Palaeothentoidea and Caenolestoidea, and the main palaeothentoid groupings: Pichipilidae, Palaeothentidae, and Abderitidae. Taxon sampling and reinterpretations of molar cusp and crest homologies played an important role in the generation of new phylogenetic hypotheses. The main differences with respect to previous phylogenies were focused on palaeothentoid relationships: Palaeothentes boliviensis and Pilchenia lucina are not members of Palaeothentidae but instead clustered with Pilchenia intermedia and P. antiqua, forming the sister‐group of a Palaeothentidae + Abderitidae clade, and Titanothentes simpsoni, previously considered a palaeothentine, is nested within the Acdestinae clade. Based on the time‐calibrated phylogeny, the following stages in the paucituberculatan evolutionary history are suggested: origin of the group, in the Paleocene to early Eocene at the latest, split of Caenolestoidea and Palaeothentoidea clades during the late early to middle Eocene, evolutionary radiation of palaeothentid and abderitid lineages near the Oligocene–Eocene boundary, and decreased diversity and extinction of palaeothentoids during the middle Miocene. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 441–465.  相似文献   

3.
A region of mitochondrial DNA, including the 3 end of tRNA phenylalanine, the complete 12S rRNA and tRNA valine genes, and the 5 end of 16S rRNA, was sequenced for four phalangerids and one burramyid; additional marsupial sequences were extracted from GenBank. Parsimony, minimum evolution, and maximum likelihood analyses show that the ground cuscus, Phalanger gymnotis, groups with the tribe Phalangerini, not with the tribe Trichosurini as had been suggested on the basis of certain morphological characters. This result is in agreement with an earlier study using DNA hybridization and is supported by some morphological evidence as well. We conclude that the character states that link the ground cuscus with the Trichosurini are the result of convergence, and therefore the placement of several other species in the trichosurin genus Strigocuscus based on the same characters should be reconsidered. The hypothesized close relationship of two fossil taxa, Strigocuscus reidi and S. notialis, to Phalanger gymnotis is also questionable because the fossils do not share morphological synapomorphies that link the ground cuscus to the Phalangerini.  相似文献   

4.
5.
6.
Trypanosoma (Megatrypanum) freitasi, a parasite of marsupials of the genus Didelphis, has been found to undergo in the lumen of the scent (anal) glands of its vertebrate host, a cycle such as usually occurs in the intestinal tract of the insect vectors of trypanosomatids and similar to what has been reported for Trypanosoma (Schizotrypanum) cruzi. The invertebrate host of Trypanosoma freitasi is still unknown. Developmental stages of the trypanosome in its mammalian host, especially the dividing epimastigotes, multinucleate plasmodial forms and rosettes found in the lumen of the scent glands of a naturally infected Didelphis marsupialis are described and illustrated.  相似文献   

7.
The convergent suite of morphological traits characterizing the mammalian sabertooth ecomorphology is well documented, including modifications of the dental and osteological portions of the masticatory apparatus from a less‐specialized carnivore condition. Equally important is how those specialized adult morphologies developed through ontogeny because previous studies have shown that growing such specialized craniodental traits may require evolutionary modification of growth patterns and tooth replacement mechanisms. Despite the understanding of convergent morphological specialization in adult sabertooth carnivores, the possibility of a convergent ontogenetic trajectory toward those adult morphologies has not been rigorously examined. The present study examines numerous previously undescribed juvenile nimravid specimens. The results provide insights about nimravid ontogeny and show, for the first time, that the nimravid sabertooth lineage included species in which the permanent upper canine erupted within a lingual concavity of the deciduous upper canine until it reached comparable crown height beyond the alveolar border. Furthermore, this investigation assesses the juvenile morphology and upper canine replacement of felid and barbourofelid sabertooth taxa. The results provide evidence of convergence in deciduous upper canine morphology of three sabertooth carnivore lineages (i.e., nimravid, felid, and barbourofelid), as well as preliminary evidence of convergence in the upper canine replacement process. It might be beneficial for studies of extreme morphological specialization to simultaneously consider convergence in adult morphologies and how morphologies change through ontogeny.  相似文献   

8.
Membracids (family: Membracidae), commonly known as treehoppers, are recognizable by their enlarged and often elaborated pronota. Much of the research investigating the development and evolution of this structure has focused on the fifth instar to adult transition, in which the pronotum undergoes the largest transformation as it takes on adult identity. However, little is known about the earlier nymphal stages, the degree to which the pronotum develops at these timepoints, and how development has changed relative to the ancestral state. Here, we studied the nymphal stages and adults of five morphologically distinct membracid species and of Aetalion reticulatum (family: Aetalionidae), the outgroup which was used as an ancestral state proxy. We found that shape differentiation in the pronotum of membracids can start as early as the second instar stage. Most shape differentiation occurs within the nymphal stages and not in the embryo since the shape of the first-instar pronotum did not differ from the outgroup species in all but one species we investigated. We found the anterior–posterior axis of the pronotum elongated at a faster relative rate in membracid species than in A. reticulatum, which contributed to the development of exaggerated pronotal size. Finally, we found differences in the morphogenesis of shape across species. We suggest this is due to the developmental and evolutionary divergence of differential growth patterning of the dorsal surface of the pronotum, not only across species, but also between stages within the same species. This lability may contribute to the evolvability and diversification of the membracid pronotum.  相似文献   

9.
The functional interpretation of the cheek teeth and the mastication cycle of Lagomorpha are deduced from various aspects of tooth morphology of fossil and extant species. Mastication is composed of an almost orthal shearing and transverse grinding in a lingual direction. Shearing blades are not only indicated by facets but as well by thickened enamel. A primary shearing blade (PSB) inherited from stem lagomorphs occurs in all examined species. It can be correlated with facets 1 and 5 (sensu Crompton 1971) and occurs in very few mammals; it is conspicuously absent in the sister-taxon Rodentia. A secondary shearing blade (SSB) occurs in derived Ochotonidae and two basal Leporidae (Romerolagus and Pronolagus) as a convergent pattern. In fossil ochotonids from Europe, the “lagicone structure” is gradually reduced in favor of the SSB. Thus, ochotonids strengthen the shearing ability, whereas most leporids favor the grinding function realized by the partial crenulation of the enamel band of the re-entrant folds. For the mastication cycle, the distinct phases were recognized, related to phase I of the tribosphenic model. The first movement (phase Ia) is directed almost orthally, the second (phase Ib) lingually. Only in Lepus europaeus was an additional phase detected, which might correspond to phase II.  相似文献   

10.
While phenotypic plasticity has been the focus of much research and debate in the recent ecological and evolutionary literature, the developmental nature of the phenomenon has been mostly overlooked. A developmental perspective must ultimately be an integral part of our understanding of how organisms cope with heterogeneous environments. In this paper I use the rapid cycling Arabidopsis thaliana to address the following questions concerning developmental plasticity. (1) Are there genetic and/or environmental differences in parameters describing ontogenetic trajectories? (2) Is ontogenetic variation produced by differences in genotypes and/or environments for two crucial traits of the reproductive phase of the life cycle, stem elongation and flower production? (3) Is there ontogenetic variability for the correlation between the two characters? I found genetic variation, plasticity, and variation for plasticity affecting at least some of the growth parameters, indicating potential for evolution via heterochronic shifts in ontogenetic trajectories. Within-population differences among families are determined before the onset of the reproductive phase, while among-population variation is the result of divergence during the reproductive phase of the ontogeny. Finally, the ontogenetic profiles of character correlations are very distinct between the ecologically meaningful categories of early- and late-flowering “ecotypes” in this species, and show susceptibility to environmental change.  相似文献   

11.
The discovery of juvenile dentitions of late Jurassic (Kimmeridgian) Dryolestidae (Eupantotheria, Mammalia) from Guimarota, Portugal, yields for the first time information on the mode of tooth replacement in therian mammals prior to the dichotomy of placentals and marsupials. As in extant placentals, tooth replacement occurs at all antemolar positions [incisors (I1–I4), canine (C), premolars (P1–P4)]. P1 and P2 have premolariform milk predecessors, whereas the large premolariform third (P3) and fourth premolars (P4) are preceded by molariform deciduous premolars (dP3, dP4). Tooth replacement takes place in two waves, at least in the lower jaw, with I2, I4, P1, and P3 in the first series and I1, I3, C, P2, and P4 in the second. P4 is the last premolar to erupt, and it is present when the sixth molar (M6) starts to break through. The reduced tooth replacement pattern of marsupials (with only dP3 being replaced postnatally) evolved secondarily from the primitive or plesiomorphic mammalian condition, which was retained in Dryolestidae and Eutheria.  相似文献   

12.
Weaning represents a challenging transition for young mammals, one particularly difficult for species coping with extreme conditions during feeding. Spotted hyenas (Crocuta crocuta) experience such extreme conditions imposed by intense feeding competition during which the ability to consume large quantities of food quickly is highly advantageous. As adult spotted hyenas have massive skulls specialized for durophagy and can feed very rapidly, young individuals are likely at a competitive disadvantage until that specialized morphology is completely developed. Here we document developmental changes in skull size, shape, and mechanical advantage of the jaws. Sampling an ontogenetic series of Crocuta skulls from individuals ranging in age from 2 months to 18 years, we use linear measurements and geometric morphometrics to test hypotheses suggesting that size, limited mechanical advantage of the jaws, and/or limited attachment sites for jaw muscles might constrain the feeding performance of juveniles. We also examine skull development in relation to key life history events, including weaning and reproductive maturity, to inquire whether ontogeny of the feeding apparatus is slower or more protracted in this species than in carnivores not specialized for durophagy. We find that, although mechanical advantage reaches maturity in hyenas at 22 months, adult skull size is not achieved until 29 months of age, and skull shape does not reach maturity until 35 months. The latter is nearly 2 years after mean weaning age, and more than 1 year after reproductive maturity. Thus, skull development in Crocuta is indeed protracted relative to that in most other carnivores. Based on the skull features that continue to change and to provide additional muscle attachment area, protracted development may be largely due to development of the massive musculature required by durophagy. These findings may ultimately shed light on the adaptive significance of the unusual “role‐reversed” pattern of female dominance over males in this species. J. Morphol. 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
1. Conservation of the federally endangered Roanoke logperch (Percina rex, Jordan and Evermann) necessitates protection of habitat that is critical for all age classes. We examined habitat use patterns of individual logperch to determine: (1) if age classes of logperch in the Nottoway and Roanoke Rivers exhibit habitat selectivity, (2) if age classes differ in habitat use, and (3) if ontogenetic patterns of habitat use differ between the Roanoke and Nottoway river populations. 2. In the summers of 2000 and 2001, we observed 17 young‐of‐year (YOY) logperch [<4 cm total length (TL)], 13 subadult logperch (4–8 cm TL), and 49 adult logperch (>8 cm TL) in the upper Roanoke River, and 40 subadult and 39 adult logperch in the Nottoway River, Virginia. 3. All size classes of Roanoke logperch demonstrated habitat selectivity and logperch used a wide range of habitats in the Roanoke and Nottoway rivers during ontogeny. Habitat use by logperch varied among age classes and between rivers. 4. In the Roanoke River, adult and subadult logperch primarily preferred run and riffle habitat, often over gravel substrate. Subadults were found in lower water velocities and slightly more embedded microhabitats than adults. YOY logperch were found in shallow, stagnant backwaters and secondary channels. In the Nottoway River, both adult and subadult logperch were found over sand and gravel in deep, low‐velocity pools and runs. Subadults were observed in slightly more silted, lower velocity habitat than adults. Shifts in habitat use were more distinct between age classes in the Roanoke River than the Nottoway River. 5. Successful conservation of this species will involve sound understanding of spatial variation in habitat use over logperch life history and preservation of the ecological processes that preserve required habitat mosaics.  相似文献   

14.
15.
Developmental changes in carapace form (size+shape) during ontogeny have been explored in Eucypris virens (Crustacea, Ostracoda) using elliptic Fourier analysis. Clones from different geographic localities raised under controlled constant conditions (temperature and photoperiod) were used to characterize developmental pathways in the species. A larger data set including field populations and laboratory populations cultured under a range of environmental conditions were used to infer influence of environmental factors on carapace shape changes during ontogeny. Size changes between consecutive juvenile stages support empirical laws describing the doubling of ostracod volume at each moult. Ontogenetic changes point out the remarkable influence of environmental conditions on carapace shape.  相似文献   

16.
Ontogenetic changes in the relationship between resting rate of oxygen consumption and wet body mass were examined at 20° C with the sea bream Pagrus major ranging from 0.00020 g (weight just after hatching) to 270 g (weight at 530 days old). There was a triphasic relationship between oxygen consumption of an individual fish M (μl min−1) and body mass W (g). During a very early stage (weight 0.00020–0.00025 g), corresponding to the pre-larval stage and with the transitional period to the post-larval stage, there was no substantial change in body mass. The mass–specific metabolic rate M/W (μl g−1 min 1) showed no clear relationship to body mass as expressed by the equation M/ W =4.86 + 1.47 D , where D is age in days. During the post-larval stage (weight 0.00031–0.005 g), M/W remained almost constant independent of body mass following the expression M = 12.5 W0 .949. During the juvenile and later stages (weight 0.005–270 g), M/ W decreased with increasing body mass following the expression M = 6.3 W 0.821 which is significantly different from the expression for the post-larval stage ( P < 0.001). Ontogenetic changes in the metabolism-body mass relationship are discussed from the viewpoint of relative growth of organs with different metabolic activities.  相似文献   

17.
Within Diplodocoidea (Dinosauria: Sauropoda), phylogenetic position of the three subclades Rebbachisauridae, Dicraeosauridae, and Diplodocidae is strongly influenced by a relatively small number of characters. Neural spine bifurcation, especially within the cervical vertebrae, is considered to be a derived character, with taxa that lack this feature regarded as relatively basal. Our analysis of dorsal and cervical vertebrae from small‐sized diplodocoids (representing at least 18 individuals) reveals that neural spine bifurcation is less well developed or absent in smaller specimens. New preparation of the roughly 200‐cm long diplodocid juvenile Sauriermuseum Aathal 0009 reveals simple nonbifurcated cervical neural spines, strongly reminiscent of more basal sauropods such as Omeisaurus. An identical pattern of ontogenetically linked bifurcation has also been observed in several specimens of the basal macronarian Camarasaurus, suggesting that this is characteristic of several clades of Sauropoda. We suggest that neural spine bifurcation performs a biomechanical function related to horizontal positioning of the neck that may become significant only at the onset of a larger body size, hence, its apparent absence or weaker development in smaller specimens. These results have significant implications for the taxonomy and phylogenetic position of taxa described from specimens of small body size. On the basis of shallow bifurcation of its cervical and dorsal neural spines, the small diplodocid Suuwassea is more parsimoniously interpreted as an immature specimen of an already recognized diplodocid taxon. Our findings emphasize the view that nonmature dinosaurs often exhibit morphologies more similar to their ancestral state and may therefore occupy a more basal position in phylogenetic analyses than would mature specimens of the same species. In light of this, we stress the need for phylogenetic reanalysis of sauropod clades where vital characters may be ontogenetically variable, particularly when data is derived from small individuals. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Coloration in three of four species of the genus Neurergus including N. microspilotus is characterized by the presence of yellow spots on a dark skin, but there is no available information about changes in spot configuration, speed of development and degree of association between melanophore‐free region and the lateral line. In this study, spot numbers, spot circularity, spot size and spot asymmetry were studied during larval to adult growth in N. microspilotus during July 2012 to June 2015. The mean numbers of spots increased during the late larval stage till postmetamorphic period from 13.33 ± 3.77 to 22.53 ± 4.09 and reached 42.62 ± 4.06 in adults. At the same time, the extent of spots gradually decreased in size from 5.80 ± 1.00 to 3.57 ± 0.97 mm2 and reached 3.55 ± 1.42 mm2 in adults, but the spot circularity increased from 0.48 ± 0.23 to 0.78 ± 0.49 and reached 0.80 ± 0.15 in adults. In adults, the numbers, circularity, size and asymmetry of spots remain stable with little but non‐significant changes during the study period. Histological study shows that formation of a melanophore‐free region correlates with the development of the lateral line receptors. This study demonstrates that the effects of lateral line on chromatophores persist through middle larval stages but diminish as metamorphosis completes.  相似文献   

19.
20.
The emergence and development of the electric-organ discharge (EOD) in larvae and juvenile bulldog Marcusenius macrolepidotus was investigated. Larvae hatched 4–5 days after spawning, and the first EODs were recorded on days 9 and 10 at a standard length ( L S) of c. 6·5 mm. The larval EOD waveform was virtually monopolar, with a strong head-positive phase followed by a weak head-negative phase of long duration. A small separate potential preceded the EOD by c. 1·6 ms (believed to represent postsynaptic potential from electrocyte stalks). In contrast to previous reports on Pollimyrus adspersus with its distinct larval and adult EODs, in M. macrolepidotus there was a gradual transformation of the larval into the adult EOD waveform. The transformation started at an L S of c. 17 mm (at an age of c. 40 days), first indications being a decrease in duration of the head-negative phase, and an increase of its peak amplitude relative to that of the head-positive phase. Still later, the weak postpotential of the adult EOD emerged on the rising edge of the head-negative phase. The transformation was nearly completed at an L S of c. 30 mm (at an age of c. 60 days). Evolutionary and behavioural consequences of this alternative path of EOD ontogeny are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号