首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Isolation and characterization of a human telomere.   总被引:17,自引:6,他引:11       下载免费PDF全文
A method is described that allows cloning of human telomeres in S. cerevisiae by joining human telomeric restriction fragments to yeast artificial chromosome halves. The resulting chimeric yeast-human chromosomes propagate as true linear chromosomes, demonstrating that the human telomere structure is capable of functioning in yeast and suggesting that telomere functions are evolutionarily conserved between yeast and human. One cloned human telomere, yHT1, contains 4 kb of human genomic DNA sequence next to the tandemly repeating TTAGGG hexanucleotide. Genomic hybridizations using both cloned DNA and TTAGGG repeats have revealed a common structural organization of human telomeres. This 4 kb of genomic DNA sequence is present in most, but not all, human telomeres, suggesting that the region is not involved in crucial chromosome-specific functions. However, the extent of common features among the human telomeres and possible similarities in organization with yeast telomeres suggest that this region may play a role in general chromosome behavior such as telomere-telomere interactions. Unlike the simple telomeric TTAGGG repeats, our cloned human genomic DNA sequence does not cross-hybridize with rodent DNA. Thus, this clone allows the identifications of the terminal restriction fragments of specific human chromosomes in human-rodent hybrid cells.  相似文献   

3.
Telomestatin is a potent G-quadruplex ligand that interacts with the 3' telomeric overhang, leading to its degradation, and induces a delayed senescence and apoptosis of cancer cells. POT1 and TRF2 were recently identified as specific telomere-binding proteins involved in telomere capping and t-loop maintenance and whose interaction with telomeres is modulated by telomestatin. We show here that the treatment of HT1080 human tumor cells by telomestatin induces a rapid decrease of the telomeric G-overhang and of the double-stranded telomeric repeats. Telomestatin treatment also provokes a strong decrease of POT1 and TRF2 from their telomere sites, suggesting that the ligand triggers the uncapping of the telomere ends. The effect of the ligand is associated with an increase of the gamma-H2AX foci, one part of them colocalizing at telomeres, thus indicating the occurrence of a DNA damage response at the telomere, but also the presence of additional DNA targets for telomestatin. Interestingly, the expression of GFP-POT1 in HT1080 cells increases both telomere and G-overhang length. As compared with HT1080 cells, HT1080GFP-POT1 cells presented a resistance to telomestatin treatment characterized by a protection to the telomestatin-induced growth inhibition and the G-overhang shortening. This protection is related to the initial G-overhang length rather than to its degradation rate and is overcome by increased telomestatin concentration. Altogether these results suggest that telomestatin induced a telomere dysfunction in which G-overhang length and POT1 level are important factors but also suggest the presence of additional DNA sites of action for the ligand.  相似文献   

4.
Human, hamster, and mouse chromosomes show both similarities and differences in telomeric organization, detectable with a novel version of the PRINS technique. The differences allowed us to investigate the fate of the telomeres on a chromosome from one species when this chromosome was introduced into the cells of another species. For this purpose, we tested telomeres in cell lines of somatic cell hybrids containing human chromosomes on a rodent background, finding that the telomeres on human chromosomes could not be discriminated from the telomeres on rodent chromosomes. All telomeres in the cell lines were much shorter than the telomeres in normal cells. In the mouse-derived cell lines, half of the mouse chromosomes were fused to other mouse chromosomes at the ends of their short arms. At the points of fusion we were generally unable to detect telomeric signals. In these cell lines, we also found a fraction of chromosomes ends with only one telomeric signal. In chromosomes where both ends showed only one signal, the relative orientation of the signals appeared to be nonrandom with respect to sister chromatids.  相似文献   

5.
We have shown functional complementation of a genetic deficiency in human cultured cells, using artificial chromosomes derived from cloned human genomic fragments. A 404-kb human-artificial-chromosome (HAC) vector, consisting of 220 kb of alphoid DNA from the centromere of chromosome 17, human telomeres, and the hypoxanthine guanine phosphoribosyltransferase (HPRT) genomic locus, was transferred to HPRT-deficient HT1080 fibrosarcoma cells. We generated several cell lines with low-copy-number, megabase-sized HACs containing a functional centromere and one or possibly several copies of the HPRT1 gene complementing the metabolic deficiency. The HACs consisted of alternating alphoid and nonalphoid DNA segments derived only from the input DNA (within the sensitivity limits of FISH detection), and the largest continuous alphoid segment was 158-250 kb. The study of both the structure and mitotic stability of these HACs offers insights into the mechanisms of centromere formation in synthetic chromosomes and will further the development of this human-gene-transfer technology.  相似文献   

6.
7.
A telomere YAC clone containing the most distal 115 kb of chromosome arm 4p has been previously isolated. This clone is of particular interest as it spans a potential candidate region for the Huntington disease gene. The YAC was subcloned into a phage vector, and a high-resolution restriction map extending to within 13 kb of the telomere was constructed. In situ hybridization of the YAC to human metaphase spreads gives a peak of hybridization on 4pter but also an increase in the number of signals close to several other telomeres. Where possible, these results were investigated further by the hybridization of probes from the YAC to somatic cell hybrids containing single human chromosomes. This analysis indicates that the most telomeric 60 kb of chromosome arm 4p is homologous to telomeric regions on 13p, 15p, 21p, and 22p. The extent of this homology makes it less likely that the mutation for Huntington's disease is located within the telomere YAC clone.  相似文献   

8.
Human artificial chromosomes (HACs) are alternative vectors that promise to overcome problematic transgene expression often occurring with conventional vectors in mammalian cells and bodies. We have successfully generated HACs by multimerization of a cloned long alphoid stretch in a human cell line, HT1080. Furthermore, we developed technologies for cloning large genomic regions into HACs by means of co-transfection of clones with the alphoid array and clones encoding the genomic region of interest. The purpose of this study was to investigate the mitotic and meiotic stability of such HACs in mouse cells and bodies. We transferred a circular HAC containing the guanosine triphosphate cyclohydrolase I gene (GCH1-HAC) and a linear HAC containing the human globin gene cluster (globin-HAC) from HT1080 cells into mouse embryonic stem (ES) cells by microcell-mediated chromosome transfer. The HACs were stably maintained in mouse ES cells for 3 months. GCH1-HACs in every ES cell line and globin-HACs in most ES cell lines maintained their structures without detectable rearrangement or acquisition of mouse genomic DNA except one globin-HAC in an ES cell line rearranged and acquired mouse-type centromeric sequences and long telomeres. Creation of chimeric mice using ES cells containing HAC and subsequent crossing showed that both the globin-HAC that had rearranged and acquired mouse type centromeric sequences/long telomeres and GCH1-HACs were retained in tissues of mice and transmitted to progeny. These results indicate that human artificial chromosomes constructed using the bottom-up strategy based on alphoid DNA are stable in mouse bodies and are transmissible.  相似文献   

9.
Selective transfer of individual human chromosomes to recipient cells.   总被引:22,自引:4,他引:18       下载免费PDF全文
Two hypoxanthine phosphoribosyltransferase-deficient human cell lines, D98/AH-2 and HT1080-6TG, were stably transfected with pSV2 gpt, a plasmid containing the selectable marker Escherichia coli xanthine-guanine phosphoribosyl transferase (Eco gpt). Hypoxanthine-aminopterin-thymidine-resistant transformants arose with a frequency of ca. 10(-6) and contained mostly single, but occasionally multiple, copies of the plasmid sequences. These transformants actively express the Eco gpt marker. Single chromosomes from two different HT1080 gpt transformants and one D98 gpt transformant, containing the integrated plasmid sequences, were transferred via microcell-mediated chromosome transfer to hypoxanthine phosphoribosyl transferase-deficient mouse A9 cells. The transferred human chromosomes were identified as 2, 4, and 22, by using a combination of G-11 staining, G-banding, isoenzyme analysis, and in situ hybridization. This system is being used to create a library of interspecies microcell hybrid clones, each clone containing a unique single human chromosome in a mouse background. The complete library will represent the entire human karyotype.  相似文献   

10.
Mejía JE  Larin Z 《Genomics》2000,70(2):165-170
We have developed a method for recombining bacterial artificial chromosomes (BACs) and P1 artificial chromosomes (PACs) containing large genomic DNA fragments into a single vector using the Cre-lox recombination system from bacteriophage P1 in vivo. This overcomes the limitations of in vitro methods for generating large constructs based on restriction digestion, ligation, and transformation of DNA into Escherichia coli cells. We used the method to construct a human artificial chromosome vector of 404 kb encompassing long tracts of alpha satellite DNA, telomeric sequences, and the human hypoxanthine phosphoribosyltransferase gene. The specificity of Cre recombinase for loxP sites minimizes the possibility of intramolecular rearrangements, unlike previous techniques using general homologous recombination in E. coli, and makes our method compatible with the presence of large arrays of repeated sequences in cloned DNA. This methodology may also be applied to retrofitting PACs or BACs with markers and functional sequences.  相似文献   

11.
Human artificial chromosomes (HACs) were generated by transfer of telomerized PAC constructs containing alpha satellite DNA of various human chromosomes. To monitor which cells took up constructs and subsequently formed stable clones under blasticidin S (BS) selection, a CMV/EGFP expression cassette was inserted into a HAC construct based on chromosome 5 alpha satellite DNA (142 kb). Lipofection into HT1080 cells resulted in a small proportion of cells exhibiting bright green fluorescence on day 1. Areas containing such early green cells were marked, and plates monitored over 2 weeks. In only one out of 41 marked areas, a viable clone developed. In the remaining 40 areas, the green cells ceased division at 1-8 cells. In contrast, outside the marked areas, 16 stable clones formed which did not exhibit green fluorescence during the first cell divisions, but all cells of each became green around day 4-6. Fluorescence in situ hybridization (FISH) analysis of isolated clonal lines demonstrated low copy HAC formation without integration. We conclude that transient expression of an EGFP marker on HAC DNA is not a suitable means for the identification of the proportion of transfected cells which are capable of forming viable clones. One explanation could be that the high copy number required to consistently detect transient EGFP expression (Schindelhauer and Laner, 2002) impairs viability and clone formation.  相似文献   

12.
Xu L  Blackburn EH 《Molecular cell》2007,28(2):315-327
Using a modified single telomere length analysis protocol (STELA) to clone and examine the sequence composition of individual human XpYp telomeres, we discovered a distinct class of extremely short telomeres in human cancer cells with active telomerase. We name them "t-stumps," to distinguish them from the well-regulated longer bulk telomeres. T-stumps contained arrangements of telomeric repeat variants and a minimal run of seven canonical telomeric TTAGGG repeats, but all could bind at least one TRF1 or TRF2 in vitro. The abundance of t-stumps was unaffected by ATM alteration but could be changed by manipulating telomerase catalytic subunit (hTERT) levels in cancer cells. We propose that in the setting of active telomerase and compromised checkpoints characteristic of human cancer cells, t-stumps define the minimal telomeric unit that can still be protected by a TRF1/TRF2-capping complex and, further, that hTERT (or telomerase) may have a role in protecting t-stumps.  相似文献   

13.
Telomeric structure in cells with chromosome end associations   总被引:13,自引:0,他引:13  
End-to-end associations of metaphase chromosomes have been observed in a variety of human tumors, ageing cells, and several chromosome instability syndromes. Since telomeres of tumor cells and ageing tissues are often reduced in length, it has been suggested that chromosome end associations may be due to loss of telomeric repeats. We report the molecular structure of telomeres of two human tumor cell lines with frequent end-to-end associations of metaphase chromosomes. These telomeres were shown to be severely reduced compared with most other human cells with functional telomeres. However, we also describe two cell lines with severely shortened telomeres that are not detectably compromised in their function. We suggest that telomeric length is not the only determinant of the fusigenic behavior of human telomeres in tumor cells.by T.C. Hsu  相似文献   

14.
We have constructed an episomal shuttle vector which can transfer large (>100 kb) human genomic DNA inserts back and forth between bacteria and human cells and which can be tracked in rapidly dividing human cells using a live cell assay. The vector (p5170) is based on the F factor-derived bacterial artificial chromosome cloning vector used in Escherichia coli, with the addition of the family of repeats element from the Epstein-Barr virus (EBV) latent origin of replication. This element provides nuclear retention in cells expressing the EBV protein EBNA-1. We have subcloned a series of genomic DNA inserts into p5170 and transfected the constructs into an EBNA-1(+) human cell line. Episomal mitotic stability was quantitatively analysed using flow cytometry. The episomes were also tracked by time course photography of expanding colonies. A 117 kb episome was retained at approximately 2 copies/cell and could be shuttled unrearranged from the human cells into bacterial cells after 15 months of continuous cell growth. Furthermore, the episome could still be rescued from human cells cultured in the absence of selection for 198 days. Such a trackable E.coli /human cell line shuttle vector system capable of carrying >100 kb of genomic DNA in human cells could prove a valuable tool in gene expression studies.  相似文献   

15.
目的:构建高效抑制核磷蛋白NPMl基因的短发夹RNA(shRNA)干扰载体。方法:以人NPM1基因为靶序列,设计并合成shRNA序列,将其连入RNA干扰慢病毒载体p113.7;酶切鉴定插入shRNA序列片段的质粒,经测序正确后转染293T细胞;Western印迹检测得到抑制效果好的载体pll-shRNA,将其-9慢病毒载体共转染293T细胞,进行病毒的包装,将得到的病毒感染HTl080细胞,通过RT-PCR、Western印迹等方法验证其抑制效果。结果:酶切证实构建的载体pll-shRNA中已插入外源基因片段,转染293T细胞后都有抑制效果,其中pll-shRNA2的抑制效果最好;用pll-shRNA2病毒感染HTl080细胞,RT-PCR和Western印迹检测分别在RNA和蛋白质水平证实NPMl的表达显著降低。结论:构建的RNA干扰载体pll-shRNA2能有效抑制NPMl的表达,为NPMl功能的研究提供了有力工具。  相似文献   

16.
Telomere directed fragmentation of mammalian chromosomes.   总被引:27,自引:3,他引:24       下载免费PDF全文
Cloned human telomeric DNA can integrate into mammalian chromosomes and seed the formation of new telomeres. This process occurs efficiently in three established human cell lines and in a mouse embryonic stem cell line. The newly seeded telomeres appear to be healed by telomerase. The seeding of new telomeres by cloned telomeric DNA is either undetectable or very inefficient in non-tumourigenic mouse or human somatic cell lines. The cytogenetic consequences of the seeding of new telomeres include large chromosome truncations but most of the telomere seeding events occur close to the pre-existing ends of natural chromosomes.  相似文献   

17.
Bleomycin is an antibiotic drug that is widely used in cancer chemotherapy. Telomeres are located at the ends of chromosomes and comprise the tandemly repeated DNA sequence (GGGTTA) n in humans. Since bleomycin cleaves DNA at 5??-GT dinucleotide sequences, telomeres are expected to be a major target for bleomycin cleavage. In this work, we determined the DNA sequence specificity of bleomycin cleavage in telomeric sequences in human cells. This was accomplished using a linear amplification procedure, a fluorescently labelled oligonucleotide primer and capillary gel electrophoresis with laser-induced fluorescence detection. This represents the first occasion that the DNA sequence specificity of bleomycin cleavage in telomeric DNA sequences in human cells has been reported. The bleomycin DNA sequence selectivity was mainly at 5??-GT dinucleotides, with lesser amounts at 5??-GG dinucleotides. The cellular bleomycin telomeric DNA damage was also compared with bleomycin telomeric damage in purified human genomic DNA and was found to be very similar. The implications of these results for the understanding of bleomycin??s mechanism of action in human cells are discussed.  相似文献   

18.
Telomeres are the specialized DNA-protein structures that cap the ends of linear chromosomes, thereby protecting them from degradation and fusion by cellular DNA repair processes. In vertebrate cells, telomeres consist of several kilobase pairs of DNA having the sequence TTAGGG, a few hundred base pairs of single-stranded DNA at the 3' end of the telomeric DNA tract, and a host of proteins that organize the telomeric double and single-stranded DNA into a protective structure. Functional telomeres are essential for maintaining the integrity and stability of genomes. When combined with loss of cell cycle checkpoint controls, telomere dysfunction can lead to genomic instability, a common cause and hallmark of cancer. Consequently, normal mammalian cells respond to dysfunctional telomeres by undergoing apoptosis (programmed cell death) or cellular senescence (permanent cell cycle arrest), two cellular tumor suppressor mechanisms. These tumor suppressor mechanisms are potent suppressors of cancer, but recent evidence suggests that they can antagonistically also contribute to aging phenotypes. Here, we review what is known about the structure and function of telomeres in mammalian cells, particularly human cells, and how telomere dysfunction may arise and contribute to cancer and aging phenotypes.  相似文献   

19.
Potential problems of conventional transgenes include insertional disruption of the host genome and unpredictable, irreproducible expression of the transgene by random integration. Alternatively, human artificial chromosomes (HACs) can circumvent some of the problems. Although several HACs were generated and their mitotic stability was assessed, a practical way for introducing exogenous genes by the HACs has yet to be explored. In this study, we developed a novel HAC from sequence-ready human chromosome 21 by telomere-directed chromosome truncation and added a loxP sequence for site-specific insertion of circular DNA by the Cre/loxP system. This 21HAC vector, delivered to a human cell line HT1080 by microcell fusion, bound centromere proteins A, B, and C and was mitotically stable during long-term culture without selection. The EGFP gene inserted in the HAC vector expressed persistently. These results suggest that the HAC vector provides useful system for functional studies of genes in isogenic cell lines.  相似文献   

20.
Subcloning of a clone of the 120-bp family of rye, pSc119, has produced two extremely useful probes. pSc119.1 assays rye-specific dispersed repetitive sequence families. It is present on all seven rye chromosomes and hybridizes to the entire length of each chromosome, with the exception of some telomeres and the nucleolar organiser region. pSc119.2, in contrast, hybridizes predominantly to the telomeric regions of rye chromosomes, with some interstitial sites. Unlike pSc119.1, it assays similar repetitive sequence families in both wheat and rye chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号