首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 148 毫秒
1.
Coenzyme Q10 (CoQ10) or ubiquinone, a redox component of the mitochondrial electron transport chains, is a powerful antioxidant and membrane stabilizer that may prevent cellular damage during myocardial ischemia and reperfusion therapy. Coenzyme Q10 has been used primarily as an adjuvant therapy for some cardiomyopathies. However, one of the main problems in CoQ10 administration is the high variability of endogenous plasma and tissue levels, which seems to be dependent on several factors. This work explores temporal 24h and seasonal variation as well as gender and racial differences in endogenous plasma ubiquinone concentration. Coenzyme Q10 measurements (quantified by HPLC-UV) of 16 healthy volunteers were done during the daytime hours of activity beginning at 09:00h one day and ending at 09:00h the next day (13 different determinations) in two distinct months, April and October, of the year. A statistically significant circadian rhythm in plasma ubiquinone concentration that includes only the fundamental 24h component was demonstrated both in the April and October data. Furthermore, the time-point means of the ubiquinone concentration in the October study were invariably higher than those obtained in the April study. No statistically significant differences were found in CoQ10 concentration between male and female subjects, both in April and in October. In addition, racial differences were demonstrated; lower plasma ubiquinone levels were found in Caucasian compared to African subjects. However, the latter small group of subjects failed to demonstrate a circadian rhythm, neither in the April nor in the October analysis.  相似文献   

2.
Coenzyme Q10 (CoQ10) is used by the body as an endogenous antioxidant and performs essential functions in mitochondrial energy production. The value of CoQ10 as a biomarker for oxidative stress will be severely restricted if there are huge individual daily variations in its concentration. For analysis of diurnal changes in CoQ10 plasma and blood cell concentrations, blood was collected from nine healthy adults (at two- or three-hour intervals for plasma, and three times a day for blood cells). CoQ10 was analysed by HPLC using electrochemical detection and internal standardisation. Daytime variations in CoQ10 concentration in plasma are maintained within narrow limits and show no statistically significant difference (Kruskal-Wallis). However, a drop at night-time (0300 h) is accompanied by a drop in total cholesterol concentration. Remarkable inter-individual differences in blood cell (erythrocytes, platelets, white blood cells) content of CoQ10 occur with only slight intra-individual daily variations. A correlation (Spearman) is found for cholesterol and CoQ10 content in circulation which may be explained by the carrier capacity of blood for this highly lipophilic substance. Moreover, a diurnal change in hepatic HMG-CoA reductase activity may suggest a common diurnal regulation of synthesis of both CoQ10 and cholesterol.  相似文献   

3.
Administration-time differences of gentamicin pharmacokinetics were studied by crossover design after a single intravenous administration of gentamicin (80 mg) to 10 human subjects at 09:00 (morning time) and 22:00 (nighttime). The profiles of serum gentamicin concentration showed a significant statistical difference between 09:00 and 22:00, suggesting circadian variations of pharmacokinetic behaviors. A significant circadian rhythm of pharmacokinetic parameters as a function of time of day was noted in human subjects, showing lower total body clearance Clt and higher serum area under the curve (AUC) when given at nighttime. The half-life t1/2 was shorter in the morning (2.82 h +/- 0.43 h) when compared to the nighttime (2.97 h +/- 0.36 h), but the difference was not statistically significant. The AUC was significantly greater in the morning (23.4 +/- 3.84 micrograms-h/mL) than that in the nighttime (26.3 +/- 5.79 micrograms-h/mL) (p < .05), most likely because the Clt was significantly higher when gentamicin was given in the morning (3.51 +/- 0.57 L/h) versus in the nighttime (3.18 +/- 0.65 L/h). Although the volume of distribution Vd decreased when given at nighttime, it was independent of the dosing time. From this study, there was an administration-time difference of gentamicin pharmacokinetics in human beings. The optimized dosing regimen of gentamicin can be decided by considering circadian rhythm and rest-activity routine so that minimized toxicity and effective therapy are established for patients. The current findings also can be applied to other drugs with circadian rhythms of pharmacokinetics and narrow therapeutic windows in clinical chronotherapeutics.  相似文献   

4.
Coenzyme Q10 (CoQ10) is used by the body as an endogenous antioxidant. This property combined with its essential function in mitochondrial energy production suggests that it may have therapeutic potential in cancer treatment. As part of the body's antioxidant defence against free radical production, CoQ10 concentrations may change during anti-cancer chemotherapy. Our study measured CoQ10 concentration in the plasma of 27 children with acute lymphoblastic leukaemia (ALL) at the time of diagnosis, during induction (protocol ALL-BFM 2000), and post induction treatment. The starting values were compared to the CoQ10 concentrations in 92 healthy children. The total CoQ10 concentration and its redox status were measured by HPLC using electrochemical detection and internal standardisation. While the CoQ10 concentration in the plasma of children with ALL was within a normal range at the time of diagnosis (0.99 +/- 0.41 pmol/microl), a drastic increase was observed during induction treatment (2.19 +/- 1.01 pmol/mul on day 33). This increase was accompanied by shift in the redox status in favour of the reduced form of CoQ10. The increase in CoQ10 concentration during induction treatment may be attributed to the activation of a natural antioxidative defence mechanism, endocrine influence on CoQ10 synthesis from steroid treatment, or a shift in CoQ10 from the damaged cells to the plasma after cell lysis.  相似文献   

5.
Mitochondrial dysfunction and oxidative stress participate in the development of diabetic complications, however, the mechanisms of their origin are not entirely clear. Coenzyme Q has an important function in mitochondrial bioenergetics and is also a powerful antioxidant. Coenzyme Q (CoQ) regenerates alpha-tocopherol to its active form and prevents atherogenesis by protecting low-density lipoproteins against oxidation. The aim of this study was to ascertain whether the experimentally induced diabetes mellitus is associated with changes in the content of endogenous antioxidants (alpha-tocopherol, coenzymes Q9 and Q10) and in the intensity of lipoperoxidation. These biochemical parameters were investigated in the blood and in the isolated heart and liver mitochondria. Diabetes was induced in male Wistar rats by a single intravenous injection of streptozotocin (45 mg x kg(-1)), insulin was administered once a day for 8 weeks (6 U x kg(-1)). The concentrations of glucose, cholesterol, alpha-tocopherol and CoQ homologues in the blood of the diabetic rats were increased. The CoQ9/cholesterol ratio was reduced. In heart and liver mitochondria of the diabetic rats we found an increased concentration of alpha-tocopherol, however, the concentrations of CoQ9 and CoQ10 were decreased. The formation of malondialdehyde was enhanced in the plasma and heart mitochondria. The results have demonstrated that experimental diabetes is associated with increased lipoperoxidation, in spite of the increased blood concentrations of antioxidants alpha-tocopherol and CoQ. These changes may be associated with disturbances of lipid metabolism in diabetic rats. An important finding is that heart and liver mitochondria from the diabetic rats contain less CoQ9 and CoQ10 in comparison with the controls. We suppose that the deficit of coenzyme Q can participate in disturbances of mitochondrial energy metabolism of diabetic animals.  相似文献   

6.
Coenzyme Q10(CoQ10) in human milk at different stages of maturity in mothers of preterm and full-term infants and its relation to the total antioxidant capacity of milk is described for the first time. Thirty healthy breastfeeding women provided colostrum, transition-milk and mature-milk samples. Coenzyme Q, alpha-, gamma- and delta-tocopherol, fatty acids and the total antioxidant capacity of the milk were analyzed. Coenzyme Q10 was found at higher concentrations for colostrum (0.81+/-0.06 vs. 0.50+/-0.05 micromol/l) and transition milk (0.75+/-0.06 vs. 0.45+/-0.05 micromol/l) in the full-term vs. the preterm group (similar results were found for total antioxidant capacity). Concentrations of alpha- and gamma-tocopherol were higher in the full-term group and decreased with time. In conclusion, CoQ10 is present in breast milk, with higher concentration in mothers of full-term infants. CoQ10 in breast milk decreases through lactation in mothers delivering full-term infants. Also, CoQ10, alpha- and gamma-tocopherol concentration in human milk directly correlates with the antioxidant capacity of the milk.  相似文献   

7.
Coenzyme Q10 (CoQ10) concentration in blood cells was analyzed by HPLC and compared to plasma concentration before, during, and after CoQ10 (3 mg/kg/day) supplementation to human probands. Lymphocyte DNA 8-hydroxydeoxy-guanosine (8-OHdG), a marker of oxidative stress, was analyzed by Comet assay. Subjects supplemented with CoQ10 showed a distinct response in plasma concentrations after 14 and 28 days. Plasma levels returned to baseline values 12 weeks after treatment stopped. The plasma concentration increase did not affect erythrocyte levels. However, after CoQ10 supplementation, the platelet level increased; after supplementation stopped, the platelet level showed a delayed decrease. A positive correlation was shown between the plasma CoQ10 level and platelet and white blood cell CoQ10 levels. During CoQ10 supplementation, delayed formation of 8-OHdG in lymphocyte DNA was observed; this effect was long-lasting and could be observed even 12 weeks after supplementation stopped. Intracellular enrichment may support anti-oxidative defense mechanisms.  相似文献   

8.
Time-dependent changes in elbow flexion torque have been documented according to two different sampling schedules. Seven physical education students took part in the first series of experiments, and 7 other similar subjects in the second. In both sets of experiments, the subjects performed isometric contractions: maximal and submaximal at 90° in the first experiments and maximal at different angular positions in the second. After a 30-minute rest period, the torque developed was measured at 00:00, 06:00, 09:00, 12:00, 15:00, 18:00, and 21:00h on the day of the experiment. These subjects remained in the laboratory for 24h. In the second series of experiments, the torque developed was measured at 01:00, 05:00, 09:00, 13:00, 17:00, and 21:00h over the subsequent 6 days with only one test session per day. In this case, there was an interval of 20h between two successive test sessions. In the first experiment, a significant time-of-day effect was observed for the torque of the elbow flexors under isometric conditions with an acrophase at 17:58h. The 24h normalized mean score was 92.85% with an amplitude of 7.63% of the daily mean. In the second series of experiments, there was evidence of a circadian rhythm in the torque developed by the elbow flexors at every angle position, especially at 90°, the angle investigated in the first set of experiments. The peak torque was calculated to have occurred at 17:55h. The amplitude of the rhythm was equal to 6.99% of the daily mean. There were no statistically significant differences in the characteristics of the circadian rhythm observed between the two experimental designs. We concluded that an experiment extending over several days could be employed to evaluate circadian rhythms in muscular activity reliably. (Chronobiology International, 14(3), 287–294, 1997)  相似文献   

9.
Mitochondrial disorders are often associated with primary or secondary CoQ10 decrease. In clinical practice, Coenzyme Q10 (CoQ10) levels are measured to diagnose deficiencies and to direct and monitor supplemental therapy. CoQ10 is reduced by complex I or II and oxidized by complex III in the mitochondrial respiratory chain. Therefore, the ratio between the reduced (ubiquinol) and oxidized (ubiquinone) CoQ10 may provide clinically significant information in patients with mitochondrial electron transport chain (ETC) defects. Here, we exploit mutants of Caenorhabditis elegans (C. elegans) with defined defects of the ETC to demonstrate an altered redox ratio in Coenzyme Q9 (CoQ9), the native quinone in these organisms. The percentage of reduced CoQ9 is decreased in complex I (gas-1) and complex II (mev-1) deficient animals, consistent with the diminished activity of these complexes that normally reduce CoQ9. As anticipated, reduced CoQ9 is increased in the complex III deficient mutant (isp-1), since the oxidase activity of the complex is severely defective. These data provide proof of principle of our hypothesis that an altered redox status of CoQ may be present in respiratory complex deficiencies. The assessment of CoQ10 redox status in patients with mitochondrial disorders may be a simple and useful tool to uncover and monitor specific respiratory complex defects.  相似文献   

10.
Administration-time differences of gentamicin pharmacokinetics were studied by crossover design after a single intravenous administration of gentamicin (80 mg) to 10 human subjects at 09:00 (morning time) and 22:00 (nighttime). The profiles of serum gentamicin concentration showed a significant statistical difference between 09:00 and 22:00, suggesting circadian variations of pharmacokinetic behaviors. A significant circadian rhythm of pharmacokinetic parameters as a function of time of day was noted in human subjects, showing lower total body clearance Clt and higher serum area under the curve (AUC) when given at nighttime. The half-life t1/2 was shorter in the morning (2.82h ± 0.43h) when compared to the nighttime (2.97h ± 0.36h), but the difference was not statistically significant. The AUC was significantly greater in the morning (23.4 ± 3.84 μg-h/mL) than that in the nighttime (26.3 ± 5.79 μg-h/mL) (p<. 05), most likely because the Clt, was significantly higher when gentamicin was given in the morning (3.51 ± 0.57 L/h) versus in the nighttime (3.18 ± 0.65 L/h). Although the volume of distribution Vd decreased when given at nighttime, it was independent of the dosing time. From this study, there was an administration-time difference of gentamicin pharmacokinetics in human beings. The optimized dosing regimen of gentamicin can be decided by considering circadian rhythm and rest-activity routine so that minimized toxicity and effective therapy are established for patients. The current findings also can be applied to other drugs with circadian rhythms of pharmacokinetics and narrow therapeutic windows in clinical chronotherapeutics.  相似文献   

11.
Olive oil consumption is associated with protective cardiovascular properties, including some beneficial modifications in lipoprotein profile and composition. Coenzyme Q(10) (CoQ(10)) exerts a protective effect on plasma lipoproteins. Aim of the study was to investigate whether extra virgin (EV) olive oil enriched with CoQ(10) affects CoQ(10) levels and oxidative status in plasma and in isolated lipoproteins. Twelve subjects were administered 20 mL olive oil per day for 2 weeks, followed by 2 weeks of olive oil enriched with 20 mg and 2 more weeks with 40 mg of CoQ(10). Plasma and isolated lipoproteins were collected in each phase of the study and subsequently analyzed to assess lipid profile, CoQ10 levels, ORAC assay, resistance of lipoproteins to peroxidation and paroxonase 1 activity. Plasma CoQ(10) levels significantly increased with the 20 mg (+73%) and 40 mg dose (+170%), while the percentage of oxidized CoQ(10) decreased. A significant inverse correlation was found in plasma between percentage of oxidized CoQ(10) and total antioxidant capacity. A lower susceptibility of LDL to peroxidation was also found. Finally, a positive correlation was observed between concentration of CoQ(10) in HDL and paraoxonase-1 activity. EV olive oil enriched with both doses of CoQ(10) significantly affects its bioavailability and plasma redox status. These changes are associated with a decreased susceptibility of plasma lipoproteins to peroxidation associated with a chain-breaking antioxidant activity of the formulation.  相似文献   

12.
Coenzyme Q10 or ubiquinone has been shown to have both anti-cancer and immune system enhancing properties when tested in animals. Preliminary results reported here suggest that it might inhibit tumour-associated cytokines. Clinical studies conducted with combination therapies of CoQ10 and other antioxidants are ongoing, but the results are difficult evaluate owing to the lack of proper control groups and of initial randomisation. Also on the basis of some anti-cancer effects of antioxidants reported in literature, further animal studies and a proper clinical trial of coenzyme Q10 in cancer patients are needed.  相似文献   

13.
Coenzyme Q (CoQ) is a well-known electron transporter in the mitochondrial respiratory chain. Furthermore, ubiquinol (UQH(2))--a reduced form of ubiquinone (UQ)--has been shown to act as a radical-scavenging antioxidant. Some studies have reported the beneficial effect of CoQ addition to cultured cells; however, the cellular uptake and distribution of CoQ have not been elucidated. In the present study, we used rat pheochromocytoma PC12 cells to investigate and compare the cellular uptake and distribution of CoQ(10) and alpha-tocopherol (alphaT). UQ(10) or UQ(10)H(2) treatment resulted in an increase in the cellular content of both CoQ(10) in a time- and concentration-dependent manner. A subcellular fractionation study revealed that the added UQ(10) as well as UQ(10)H(2) mainly localized in the mitochondrial fraction, which is similar to the localization of endogenous CoQ but different from that of alphaT. The cellular distribution of alphaT directly corresponded to the lipid distribution, while the CoQ distribution did not show any relationship with the lipid distribution, particularly in the mitochondrial and microsomal fractions. These results indicate that the cellular distribution of CoQ is completely different from that of alphaT; moreover, a certain system which accumulates CoQ preferentially in mitochondria may be suggested.  相似文献   

14.
Coenzyme Q (CoQ), an electron transfer molecule in the respiratory chain and a lipid-soluble antioxidant, is present in almost all organisms. Most cereal crops produce CoQ9, which has nine isoprene units. CoQ10, with 10 isoprene units, is a very popular food supplement. Here, we report the genetic engineering of rice to produce CoQ10 using the gene for decaprenyl diphosphate synthase (DdsA). The production of CoQ9 was almost completely replaced with that of CoQ10, despite the presence of endogenous CoQ9 synthesis. DdsA designed to express at the mitochondria increased accumulation of total CoQ amount in seeds.  相似文献   

15.
We have investigated the role of the Coenzyme Q pool in glycerol-3-phosphate oxidation in hamster brown adipose tissue mitochondria. Antimycin A and myxothiazol inhibit glycerol-3-phosphate cytochromec oxidoreductase in a sigmoidal fashion, indicating that CoQ behaves as a homogeneous pool between glycerol-3-phosphate dehydrogenase and complex III. The inhibition of ubiquinol cytochromec reductase is linear at low concentrations of both inhibitors, indicating that sigmoidicity of antimycin A and myxothiazol inhibition is not a direct property of antimycin A and myxothiazol binding. Glycerol-3-phosphate cytochromec oxidoreductase is strongly stimulated by added CoQ3, indicating that endogenous CoQ is not saturating. Application of the pool equation for nonsaturating ubiquinone allows calculation of theK m for endogenous CoQ of glycerol-3-phosphate dehydrogenase of 3.14mM. The results of this investigations reveal that CoQ behaves as a homogeneous pool between glycerol-3-phosphate dehydrogenase and complex III in brown adipose tissue mitochondria; moreover, its concentration is far below saturation for maximal electron transfer activity in comparison with other branches of the respiratory chain connected with the CoQ pool. HPLC analysis revealed a lower amount of CoQ in brown adipose mitochondria (0.752 nmol/mg protein) in comparison with mitochondria from other tissues and the presence of both CoQ9 and CoQ10.  相似文献   

16.
Coenzyme Q10 (CoQ(10)) levels in human saliva were measured by HPLC with a highly sensitive electrochemical detector (ECD) and a special concentration column. This HPLC system showed satisfactory analytical results within the standard range of 0.78-50 ng/ml. We also found a significant correlation between CoQ(10) levels in plasma and in saliva from parotid glands, while this correlation was lacking between plasma CoQ10 and CoQ10 in whole saliva. Unlike in plasma, there are some fluctuations of saliva CoQ(10) levels throughout the day. A good correlation was obtained by collecting parotid gland saliva at times between meals. The mean saliva CoQ(10) level for 55 healthy volunteers was 17.0 ng/ml (S.D. 6.8 ng/ml); approximately one fiftieth of that in plasma. Regarding the influence of oral supplementation, CoQ(10) was analyzed in plasma and parotid gland saliva from 20 healthy volunteers supplemented daily with 100 mg of CoQ(10) for the first week and 200 mg for the second. The plasma CoQ(10) levels of all volunteers increased to different extents in accordance with the CoQ(10) daily intake and the corresponding change in saliva showed almost the same trend.  相似文献   

17.
We demonstrated in previous works that the circadian rhythms of blood pressure (BP) and atrial natriuretic peptide (ANP) are antiphasic in normal subjects and in essential hypertension. The aim of the present study was to assess the circadian rhythms of BP and ANP in 20 patients with stable congestive heart failure (CHF), divided into two groups of 10 according to their New York Heart Association functional class. A matched control group of 10 normal volunteers was also studied. Noninvasive BP monitoring at 15-min intervals was performed for 24 h. Peripheral blood samples were also obtained at 4-h intervals starting from 08:00 h. The mean (+/- SEM) circadian mesors of ANP plasma levels were 13.4 +/- 1.7 pmol/L in the control group, 28.6 +/- 2.4 pmol/L in the group of 10 patients in class II, and 81.5 +/- 12 pmol/L in the group of 10 patients in class III-IV. In normal subjects, plasma ANP concentration was highest at 04:00 h (21.5 +/- 2.7 pmol/L) and lowest at 16:00 h (8.8 +/- 2.4 pmol/L; p less than 0.01). Both groups of patients with CHF showed no significant circadian change in the plasma levels of ANP and also a significantly blunted circadian rhythm of BP. Cosinor analysis confirmed the loss of the circadian rhythms of ANP and BP in CHF patients. Our findings support the existence of a causal relationship between the circadian rhythms of ANP and BP.  相似文献   

18.
Ubiquinone, coenzyme Q, plays a pivotal role in electron transport and is a target for chemotherapy against a number of eukaryotic infectious agents, including Pneumocystis carinii. Coenzyme Q10 was previously identified as the major ubiquinone homolog in P. carinii isolated and purified from rat lungs; CoQ9 was also present. In contrast, CoQ9 and CoQ8 (but not CoQ10) were detected in the lungs of uninfected rat controls. These observations suggested that the pathogen synthesizes CoQ10, and perhaps CoQ9 as well. In the present study, CoQ biosynthesis in P. carinii was examined in greater detail. Radiolabeled mevalonate, a precursor of the CoQ polyprenyl chain, was incorporated in vitro into P. carinii ubiquinones. Incorporation of radiolabeled mevalonate into P. carinii CoQ was not enhanced by treating cells with lovastatin, suggesting that the cells did not transport the drug, or that a lovastatin-insensitive pathway for de novo synthesis of isoprenoids may also function in this organism. Radiolabeled precursors of the ring moiety, including shikimic acid, p-hydroxybenzoic acid, and tyrosine were also incorporated into P. carinii CoQ. Unexpectedly, it was found that not only CoQ9 and CoQ10, but also CoQ7, and CoQ8, were metabolically radiolabeled by all the precursors tested, indicating that the organism synthesizes CoQ7, CoQ8, CoQ9, and CoQ10. Metabolic radiolabeling of ubiquinones in rat lung controls was not detected in experiments using either radioactive mevalonate or p-hydroxybenzoate. Thus the incorporations measured using purified P. carinii preparations were due to the enzymes of the organism.  相似文献   

19.
In contrast to other lipophilic antioxidants Coenzyme Q10 originates from food intake as well as from endogenous synthesis. The CoQ10 concentration and lipid content of maternal milk and maternal plasma was investigated during early lactation. Breast milk was obtained from 23 women: A: colostrums (24-48 hours postpartum), B: transitional milk (day 7 pp), C: mature milk (day 14 pp). At the same time capillary blood specimens were collected. Milk and plasma were stored at -84 degrees C until CoQ10 was analysed after hexane extraction by HPLC. The lipid content was determined by PAP-analysis of cholesterol. The plasma content of CoQ10 was the highest soon after delivery (A: 1.29, B:1.20, C:1.07 pmol/microl; Wilcoxon p < 0.05 A vs. C and B vs. C). This tendency was still evident after lipid-adjustment (A:209, B:180, C:175 micromol CoQ10/mol cholesterol; Wilcoxon p < 0.01 A vs. B and C). The level of CoQ10 in milk showed a gradual decline during early lactation (A:0.80, B:0.57, C:0.44 pmol/microl; Wilcoxon p < 0.02 A vs. B and C). After lipid-adjustment this tendency became even more evident (A: 137, B:86, C:67 micromol CoQ10/mol cholesterol; Wilcoxon p < 0.002 A vs. B and C, p < 0.05 B vs. C). The content of CoQ10 in plasma and milk showed a correlation with early milk (Spearman p < 0.005) but not with mature milk. Although lipid content is low the colostrums is a rich source for the lipophilic antioxidant CoQ10.  相似文献   

20.
Rhythmic changes in activity following a circadian schedule have been described for several enzymes. The possibility of circadian changes in Na,K-ATPase activity was studied in homogenates of rat kidney cortex cells. Male Sprague-Dawley rats were kept on a schedule of 12h light (06:00-18:00 h) and 12 h darkness (18:00-06:00 h) for 2 weeks. At the end of the conditioning period, one rat was killed every 2 h, until completion of a 24 h cycle. Outermost kidney cortex slices were prepared, homogenized and assayed for Na,K-ATPase activity. The whole procedure was repeated six times. Na,K-ATPase activity shows an important oscillation (2 cycles/24 h). Peak activities were detected at 09:00 and 21:00 h, whereas the lowest activities were detected at 15:00 and 01:00-03:00 h. The highest activity was 40+/-3 nmoles Pi mg protein(-1)min(-1) (09:00 h), and the lowest was 79+/-3 nmoles Pi mg protein(-1)min(-1) (15:00 h). The amount of the Na+-stimulated phosphorylated intermediate is the same for the 09:00 h and 15:00 h homogenates. Preincubation of 09:00 h kidney cortex homogenates with blood plasma drawn from rats at either 03:00 h or 15:00 h, significantly inhibited their Na,K-ATPase activity. This inhibition was not seen when the preincubation was carried out with either 09:00 h or 21:00 h blood plasma. The striking oscillation (2 cycles/24 h) of the Na,K-ATPase activity of rat kidney cortex cells is ascribed to the presence of an endogenous inhibitor in blood plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号