首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the hippocampal long-term potentiation (LTP), neurogenesis, and the activation of signaling molecules in the 20-month-old aged rats following chronic lithium treatment. Chronic lithium treatment produced a significant 79% increase in the numbers of BrdU(+) cells after treatment completion in the dentate gyrus (DG). Both LTP obtained from slices perfused with artificial cerebrospinal fluid (ACSF-LTP), and LTP recorded in the presence of bicuculline (bicuculline-LTP) were significantly greater in the lithium group than in the saline controls. Our results show that as with young rats, chronic lithium can substantially increase LTP and the number of BrdU(+) cells in the aged rats. However, neurogenesis, assessed by colocalization of NeuN and BrdU, was not detected in the aged rat DG subjected to chronic lithium treatment. Therefore, it is concluded that the increase in LTP and the number of BrdU(+) cells might not be associated with increases in neurogenesis in the granule cell layer of the DG. Lithium might has a beneficial effects through other signaling pathways in the aged brain.  相似文献   

2.
3.
Neural recognition molecules such as the neural cell adhesion molecule (NCAM) have been implicated in synaptic plasticity, including long-term potentiation (LTP), sensitization, and learning and memory. The major isoform of NCAM carrying the longest cytoplasmic domain of all NCAM isoforms (NCAM180) is predominantly localized in postsynaptic membranes and postsynaptic densities of hippocampal neurons, with only a proportion of synapses carrying detectable levels of NCAM180. To investigate whether this differential expression of NCAM180 may correlate with distinct states of synaptic activity, LTP was induced by high-frequency stimulation of the perforant path and the percentage of NCAM180 immunopositive spine synapses determined in the outer third of the dentate molecular layer of the dentate gyrus by immunoelectron microscopy. Twenty-four hours following induction of LTP by high-frequency stimulation, the percentage of spine synapses expressing NCAM180 increases from 37% (passive control) to 70%. This increase was inhibited by the noncompetitive N-methyl-D -aspartate receptor antagonist MK801. Following repeated LTP induction at 10 consecutive days with one tetanization each day, 60% of all spine synapses were NCAM180 immunoreactive. Compared to passive control animals, the percentage of NCAM180 expressing synapses in low-frequency stimulated animals decreased from 37% to 28%. Spine synapses in the inner part of the dentate molecular layer not contacted by the afferents of the perforant path did not change the percentage of NCAM180-expressing synapses. The results obtained by the postembedding immunogold staining technique confirmed the difference in NCAM180 expression of spine synapses between passive control and potentiated animals. These observations suggest a role for NCAM180 in synaptic remodeling accompanying LTP. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 359–372, 1998  相似文献   

4.
为了探讨强制运动对成年大鼠海马齿状回(dentate gyrus,DG)神经发生的影响,强制大鼠在马达驱动的转轮中跑步,用5-溴-2-脱氧尿苷(5-bromo-2-deoxyuridine,BrdU)标记增殖细胞,巢蛋白(neuroepthelial stem cell protein,nestin)标记神经干细胞/前体细胞,然后用免疫细胞化学技术检测大鼠DG中BrdU及nestin阳性细胞。为了解强制运动后DG增殖细胞的功能意义,采用Y-迷宫检测大鼠的学习能力。结果表明,强制运动组DG中BrdU及nestin阳性细胞数均日月显多于对照组(P〈0.05):强制运动对DG神经发生的效应有强度依赖性。Y-迷宫检测结果显示,强制运动能明显改善大鼠的学习能力。结果提示,在转轮中进行强制跑步能促进成年火鼠DG的神经发生,并改善学习能力。  相似文献   

5.
目的:研究间歇性低氧对大鼠海马神经元突触可塑性的影响。方法:大鼠受间歇性低氧处理后,用脑立体定位仪定位,观察海马时程增强电位(LTP)的变化。结果:间歇性低氧大鼠LTP幅值显著低于对照组。结论:间歇性低氯可影响LTP幅值,提示间歇性低氧可能使大鼠海马神经元的突触可塑性发生变化。  相似文献   

6.
Lithium has been demonstrated to increase neurogenesis in the dentate gyrus of rodent hippocampus. The present study was undertaken to investigate the effects of lithium on the proliferation and differentiation of rat neural progenitor cells in hippocampus both in vitro and in vivo. Lithium chloride (1-3 mM) produced a significant increase in the number of bromodeoxyuridine (BrdU)-positive cells in high-density cultures, but did not increase clonal size in low-density cultures. Lithium chloride at 1 mM (within the therapeutic range) also increased the number of cells double-labeled with BrdU antibody and TuJ1 (a class III beta-tubulin antibody) in high-density cultures and the number of TuJ1-positive cells in a clone of low-density cultures, whereas it decreased the number of glial fibrillary acidic protein-positive cells in both cultures. These results suggest that lithium selectively increased differentiation of neuronal progenitors. These actions of lithium appeared to enhance a neuronal subtype, calbindin(D28k)-positive cells, and involved a phosphorylated extracellular signal-regulated kinase and phosphorylated cyclic AMP response element-binding protein-dependent pathway both in vitro and in vivo. These findings suggest that lithium in therapeutic amounts may elicit its beneficial effects via facilitation of neural progenitor differentiation toward a calbindin(D28k)-positive neuronal cell type.  相似文献   

7.
This review focuses on the research that has occurred over the past decade which has solidified a postsynaptic expression mechanism for long-term potentiation (LTP). However, experiments that have suggested a presynaptic component are also summarized. It is argued that the pairing of glutamate uncaging onto single spines with postsynaptic depolarization provides the final and most elegant demonstration of a postsynaptic expression mechanism for NMDA receptor-dependent LTP. The fact that the magnitude of this LTP is similar to that evoked by pairing synaptic stimulation and depolarization leaves little room for a substantial presynaptic component. Finally, recent data also require a revision in our thinking about the way AMPA receptors (AMPARs) are recruited to the postsynaptic density during LTP. This recruitment is independent of subunit type, but does require an adequate reserve pool of extrasynaptic receptors.  相似文献   

8.
The effects of the co-agonist of the N-methyl-D-aspartate receptor (NMDAr) D-serine on glutamatergic neurotransmission and synaptic potentiation were studied in the CA1 hippocampal field of young (3-5 months old) and aged (25-27 months old) Sprague-Dawley rats using ex vivo extracellular electrophysiological recording techniques. Exogenous d-serine depressed fast neurotransmission mediated by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate subtype of glutamate receptors in young but not in aged rats by acting on inhibitory glycinergic interneurons. In contrast, D-serine dose-dependently enhanced NMDAr-mediated synaptic responses in both groups of animals, but with a larger magnitude in aged rats, thus preventing the age-related decrease in NMDAr activation. D-serine also increased the magnitude of long-term potentiation in aged but not in young rats. Finally, D-serine levels were dramatically reduced in hippocampal tissues of aged rats. Taken together, these results indicate a weaker activation of the NMDAr glycine modulatory site by endogenous D-serine in aged animals, which accounts for a reduced NMDAr contribution to synaptic plasticity in ageing.  相似文献   

9.
Neurons are able to express long-lasting and activity-dependent modulations of their synapses. This plastic property supports memory and conveys an extraordinary adaptive value, because it allows an individual to learn from, and respond to, changes in the environment. Molecular and physiological changes at the cellular level as well as network interactions are required in order to encode a pattern of synaptic activity into a long-term memory. While the cellular mechanisms linking synaptic plasticity to memory have been intensively studied, those regulating network interactions have received less attention. Combining high-resolution fMRI and in vivo electrophysiology in rats, we have previously reported a functional remodelling of long-range hippocampal networks induced by long-term potentiation (LTP) of synaptic plasticity in the perforant pathway. Here, we present new results demonstrating an increased bilateral coupling in the hippocampus specifically supported by the mossy cell commissural/associational pathway in response to LTP. This fMRI-measured increase in bilateral connectivity is accompanied by potentiation of the corresponding polysynaptically evoked commissural potential in the contralateral dentate gyrus and depression of the inactive convergent commissural pathway to the ipsilateral dentate. We review these and previous findings in the broader context of memory consolidation.  相似文献   

10.
11.
神经元长时程突触可塑性是学习和记忆的基础,神经元长时程突触可塑性的维持依赖于基因的转录和蛋白质合成.然而,这些转录产物和新合成的蛋白质是如何从胞体运输到突触点,还不甚清楚.近年来的研究显示,当长时程突触可塑性发生时,被激活的突触能通过建立突触标记(synaptic tag)来识别、捕捉和利用其所需要的基因产物,以维持突触可塑性的长时程变化.这一过程或现象被称为突触标识(synaptic tagging).本文就近年来突触标识的研究进展作一概述.  相似文献   

12.
13.
Our laboratory demonstrated previously that PGE2-induced modulation of hippocampal synaptic transmission is via a pre-synaptic PGE2 EP2 receptor. However, little is known about whether the EP2 receptor is involved in hippocampal long-term synaptic plasticity and cognitive function. Here we show that long-term potentiation at the hippocampal perforant path synapses was impaired in mice deficient in the EP2 (KO), while membrane excitability and passive properties in granule neurons were normal. Importantly, escape latency in the water maze in EP2 KO was longer than that in age-matched EP2 wild-type littermates (WT). We also observed that long-term potentiation was potentiated in EP2 WT animals that received lipopolysaccharide (LPS, i.p.), but not in EP2 KO. Bath application of PGE2 or butaprost, an EP2 receptor agonist, increased synaptic transmission and decreased paired-pulses ratio in EP2 WT mice, but failed to induce the changes in EP2 KO mice. Meanwhile, synaptic transmission was elevated by application of forskolin, an adenylyl cyclase activator, both in EP2 KO and WT animals. In addition, the PGE2-enhanced synaptic transmission was significantly attenuated by application of PKA, IP3 or MAPK inhibitors in EP2 WT animals. Our results show that hippocampal long-term synaptic plasticity is impaired in mice deficient in the EP2, suggesting that PGE2-EP2 signaling is important for hippocampal long-term synaptic plasticity and cognitive function.  相似文献   

14.
15.
16.
Despite advances in our understanding of the basic biology of amyloid precursor protein (APP), the normal physiological function(s) of APP in learning and memory remains unclear. Here we show increased APP degradation in the hippocampus to be associated with the consolidation of a passive avoidance response. Neurone-specific APP695 expression became transiently reduced 2-4 h post-training through association with endosomal adaptin proteins and enhanced internalization. By contrast, internalization of glial-associated APP containing a Kunitz protease inhibitor-like domain (APP-KPI) was dependent on the low-density lipoprotein receptor-related protein (LRP). In addition, LRP expression and association with apolipoprotein E increased in the 2-4 h post-training period. The LRP antagonist receptor-associated protein prevented the APP-KPI internalization and LRP-apolipoprotein E association and this resulted in amnesia. Degradation of APP695 and APP-KPI did not appear to be related to alpha-secretase activity, as no learning-associated increase of secreted APP was observed in the CSF. Moreover, as internalization of APP isoforms was observed only in dentate gyrus, it probably relates to the learning-associated restructuring of the perforant path terminals. Memory-associated APP processing in both neuronal and glial compartments points to a role for glial unsheathing of synaptic connections, an event required for the synaptic restructuring that accompanies memory consolidation. These observations may have a direct relevance to understanding the pathophysiology of Alzheimer's disease as beta/gamma-secretase-derived beta-amyloid is formed following internalization of cell surface APP into the endosomal compartment.  相似文献   

17.
18.
Binge ethanol exposure decreases neurogenesis in adult rat hippocampus   总被引:10,自引:0,他引:10  
Alcoholism is associated with cognitive deficits and loss of brain mass. Recent studies have indicated that neural progenitor cells proliferate throughout life forming neurons, astrocytes, and oligodendrocytes. The dentate gyrus is one neurogenic region of the adult brain containing neural progenitor cells. To determine if binge ethanol (EtOH) exposure alters neural progenitor cell proliferation and survival, bromodeoxyuridine was administered to adult male rats following an acute or chronic binge exposure paradigm. For an acute binge, rats were gavaged with a 5 g/kg dose of EtOH or vehicle, administered bromodeoxyuridine, and killed either 5 h or 28 days after EtOH treatment. In a 4-day, chronic-binge paradigm, rats were infused with EtOH three times per day (mean dose 9.3 g/kg/day) or isocaloric control diet. Rats were given bromodeoxyuridine once a day for the 4 days of chronic binge treatment, then perfused either immediately following the last dose of EtOH or 28 days later. In both EtOH treatment groups, binge EtOH decreased neural progenitor cell proliferation. Following the chronic four-day binge, neural progenitor cell survival was decreased. These studies are the first to show EtOH inhibition of neural progenitor cell proliferation and survival in the adult, a possible new mechanism underlying alcoholic cognitive dysfunction.  相似文献   

19.
Zhang L  Luo XP 《生理学报》2011,63(2):124-130
热性癫痫发作是儿童常见病,能损害认知功能,而突触可塑性和再可塑性(metaplasticity)是维系大脑认知功能的重要神经基础.本文通过脑片灌流和细胞外场电位记录术研究了热性癫痫发作大鼠海马齿状回外侧支的突触可塑性和再可塑性.制作对照组和热性癫痫发作组大鼠的脑切片后,记录电极置于齿状回外侧支的外分子层获取兴奋性突触后...  相似文献   

20.
Stress is the response to stimulation from inside andoutside with complicated effects on organisms. Appropri-ate stressful reactions are helpful in resisting diseases byactivating unspecific modulation system, while severe orprolonged stresses are harmful and even induce mentaland physical disorders such as recurrent depression, post-traumatic stress disorder (PTSD), Alzheimer’s disease andepilepsy [1]. Hippocampus, a main brain region of keyimportance for learning, memory and emotion, is t…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号