首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recoverin belongs to the superfamily of EF-hand Ca2+-binding proteins and operates as a Ca2+-sensor in vertebrate photoreceptor cells, where it regulates the activity of rhodopsin kinase GRK1 in a Ca2+-dependent manner. Ca2+-dependent conformational changes in recoverin are allosterically controlled by the covalently attached myristoyl group. The amino acid sequence of recoverin harbors a unique cysteine at position 38. The cysteine can be modified by the fluorescent dye Alexa647 using a maleimide-thiol coupling step. Introduction of Alexa647 into recoverin did not disturb the biological function of recoverin, as it can regulate rhodopsin kinase activity like unlabeled recoverin. Performance of the Ca2+-myristoyl switch of labeled recoverin was monitored by Ca2+-dependent association with immobilized lipids using surface plasmon resonance spectroscopy. When the Ca2+-concentration was varied, labeled myristoylated recoverin showed a 37%-change in fluorescence emission and a 34%-change in excitation intensity, emission and excitation maxima shifted by 6 and 18 nm, respectively. In contrast, labeled nonmyristoylated recoverin exhibited only minimal changes. Time-resolved fluorescence measurements showed biexponentiell fluorescence decay, in which the slower time constant of 2 ns was specifically influenced by Ca2+-induced conformational changes. A similar influence on the slower time constant was observed with the recoverin mutant RecE85Q that has a disabled EF-hand 2, but no such influence was detected with the mutant RecE121Q (EF-hand 3 is nonfunctional) that contains the myristoyl group in a clamped position. We conclude from our results that Alexa647 bound to cysteine 38 can monitor the conformational transition in recoverin that is under control of the myristoyl group.  相似文献   

2.
Recoverin is a neuronal calcium sensor protein that controls the activity of rhodopsin kinase in a Ca(2+)-dependent manner. Mutations in the EF-hand Ca2+ binding sites are valuable tools for investigating the functional properties of recoverin. In the recoverin mutant E121Q (Rec E121Q ) the high-affinity Ca2+ binding site is disabled. The non-myristoylated form of Rec E121Q binds one Ca2+ via its second Ca(2+)-binding site (EF-hand 2), whereas the myristoylated variant does not bind Ca2+ at all. Binding of Ca2+ to non-myristoylated Rec E121Q apparently triggers exposure of apolar side chains, allowing for association with hydrophobic matrices. Likewise, an interaction surface for the recoverin target rhodopsin kinase is constituted upon Ca2+ binding to the non-acylated mutant. Structural changes resulting from Ca(2+)-occupation of EF-hand 2 in myristoylated and non-myristoylated recoverin variants are discussed in terms of critical conditions required for biological activity.  相似文献   

3.
Recoverin is a member of the neuronal calcium sensor (NCS) family of EF-hand calcium binding proteins. In a visual cycle of photoreceptor cells, recoverin regulates activity of rhodopsin kinase in a Ca2+-dependent manner. Like all members of the NSC family, recoverin contains a conserved cysteine (Cys38) in nonfunctional EF-hand 1. This residue was shown to be critical for activation of target proteins in some members of the NCS family but not for interaction of recoverin with rhodopsin kinase. Spectrophotometric titration of Ca2+-loaded recoverin gave 7.6 for the pKa value of Cys38 thiol, suggesting partial deprotonation of the thiol in vivo conditions. An ability of recoverin to form a disulfide dimer and thiol-oxidized monomer under mild oxidizing conditions was found using SDS-PAGE in reducing and nonreducing conditions and Ellman's test. Both processes are reversible and modulated by Ca2+. Although formation of the disulfide dimer takes place only for Ca2+-loaded recoverin, accumulation of the oxidized monomer proceeds more effectively for apo-recoverin. The Ca2+ modulated susceptibility of the recoverin thiol to reversible oxidation may be of potential importance for functioning of recoverin in photoreceptor cells.  相似文献   

4.
Cholesterol-rich membranes or detergent-resistant membranes (DRMs) have recently been isolated from bovine rod outer segments and were shown to contain several signaling proteins such as, for example, transducin and its effector, cGMP-phosphodiesterase PDE6. Here we report the presence of rhodopsin kinase and recoverin in DRMs that were isolated in either light or dark conditions at high and low Ca2+ concentrations. Inhibition of rhodopsin kinase activity by recoverin was more effective in DRMs than in the initial rod outer segment membranes. Furthermore, the Ca2+ sensitivity of rhodopsin kinase inhibition in DRMs was shifted to lower free Ca2+ concentration in comparison with the initial rod outer segment membranes (IC50=0.76 microm in DRMs and 1.91 microm in rod outer segments). We relate this effect to the high cholesterol content of DRMs because manipulating the cholesterol content of rod outer segment membranes by methyl-beta-cyclodextrin yielded a similar shift of the Ca2+-dependent dose-response curve of rhodopsin kinase inhibition. Furthermore, a high cholesterol content in the membranes also increased the ratio of the membrane-bound form of recoverin to its cytoplasmic free form. These data suggest that the Ca2+-dependent feedback loop that involves recoverin is spatially heterogeneous in the rod cell.  相似文献   

5.
GCAP-2, a mammalian photoreceptor-specific protein, is a Ca2+-dependent regulator of the retinal membrane guanylyl cyclases (Ret-GCs). Sensing the fall in intracellular free Ca2+ after photo-excitation, GCAP-2 stimulates the activity of Ret-GC leading to cGMP production. Like other members of the recoverin superfamily, GCAP-2 is a small N-myristoylated protein containing four EF-hand consensus motifs. In this study, we demonstrate that like recoverin and neurocalcin, GCAP-2 alters its conformation in response to Ca2+-binding as measured by a Ca2+-dependent change in its far UV CD spectrum. Differences in the conformation of the Ca2+-bound and Ca2+-free forms of GCAP-2 were also observed by examining their relative susceptibility to V8 protease. In contrast to recoverin, we do not observe proteolytic cleavage of the myristoylated N-terminus of Ca2+-bound GCAP-2. NMR spectra also show that, in contrast to recoverin, the chemical environment of the N-terminus of GCAP-2 is not dramatically altered by Ca2+ binding. Despite the similarity of GCAP-2 and recoverin, the structural consequences of Ca2+-binding for these two proteins are significantly dissimilar.  相似文献   

6.
NCS (neuronal Ca2+ sensor) proteins belong to a family of calmodulin-related EF-hand Ca2+-binding proteins which, in spite of a high degree of structural similarity, are able to selectively recognize and regulate individual effector enzymes in a Ca2+-dependent manner. NCS proteins vary at their C-termini, which could therefore serve as structural control elements providing specific functions such as target recognition or Ca2+ sensitivity. Recoverin, an NCS protein operating in vision, regulates the activity of rhodopsin kinase, GRK1, in a Ca2+-dependent manner. In the present study, we investigated a series of recoverin forms that were mutated at the C-terminus. Using pull-down assays, surface plasmon resonance spectroscopy and rhodopsin phosphorylation assays, we demonstrated that truncation of recoverin at the C-terminus significantly reduced the affinity of recoverin for rhodopsin kinase. Site-directed mutagenesis of single amino acids in combination with structural analysis and computational modelling of the recoverin-kinase complex provided insight into the protein-protein interface between the kinase and the C-terminus of recoverin. Based on these results we suggest that Phe3 from the N-terminal helix of rhodopsin kinase and Lys192 from the C-terminal segment of recoverin form a cation-π interaction pair which is essential for target recognition by recoverin. Taken together, the results of the present study reveal a novel rhodopsin-kinase-binding site within the C-terminal region of recoverin, and highlights its significance for target recognition and regulation.  相似文献   

7.
Ames JB  Hamasaki N  Molchanova T 《Biochemistry》2002,41(18):5776-5787
Recoverin, a member of the EF-hand superfamily, serves as a calcium sensor in retinal rod cells. A myristoyl or related fatty acyl group covalently attached to the N-terminus of recoverin facilitates the binding of recoverin to retinal disk membranes by a mechanism known as the Ca2+-myristoyl switch. Previous structural studies revealed that the myristoyl group of recoverin is sequestered inside the protein core in the absence of calcium. The cooperative binding of two calcium ions to the second and third EF-hands (EF-2 and EF-3) of recoverin leads to the extrusion of the fatty acid. Here we present nuclear magnetic resonance (NMR), fluorescence, and calcium-binding studies of a myristoylated recoverin mutant (myr-E85Q) designed to abolish high-affinity calcium binding to EF-2 and thereby trap the myristoylated protein with calcium bound solely to EF-3. Equilibrium calcium-binding studies confirm that only one Ca2+ binds to myr-E85Q under the conditions of this study with a dissociation constant of 100 microM. Fluorescence and NMR spectra of the Ca2+-free myr-E85Q are identical to those of Ca2+-free wild type, indicating that the E85Q mutation does not alter the stability and structure of the Ca2+-free protein. In contrast, the fluorescence and NMR spectra of half-saturated myr-E85Q (one bound Ca2+) look different from those of Ca2+-saturated wild type (two bound Ca2+), suggesting that half-saturated myr-E85Q may represent a structural intermediate. We report here the three-dimensional structure of Ca2+-bound myr-E85Q as determined by NMR spectroscopy. The N-terminal myristoyl group of Ca2+-bound myr-E85Q is sequestered within a hydrophobic cavity lined by many aromatic residues (F23, W31, Y53, F56, F83, and Y86) resembling that of Ca2+-free recoverin. The structure of Ca2+-bound myr-E85Q in the N-terminal region (residues 2-90) is similar to that of Ca2+-free recoverin, whereas the C-terminal region (residues 100-202) is more similar to that of Ca2+-bound wild type. Hence, the structure of Ca2+-bound myr-E85Q represents a hybrid between the structures of recoverin with zero and two Ca2+ bound. The binding of Ca2+ to EF-3 leads to local structural changes within the EF-hand that alter the domain interface and cause a 45 degrees swiveling of the N- and C-terminal domains, resulting in a partial unclamping of the myristoyl group. We propose that Ca2+-bound myr-E85Q may represent a stable intermediate state in the kinetic mechanism of the calcium-myristoyl switch.  相似文献   

8.
Recoverin is a recently identified Ca(2+)-binding protein that imparts Ca2+ sensitivity to vertebrate photoreceptor guanylate cyclase. In response to photo-induced depletion of intracellular cGMP and Ca2+, recoverin stimulates resynthesis of cGMP. Bovine retinal recoverin has now been analyzed by electrospray mass spectrometry (ESI-MS) for post-translational modifications that might influence its activity. Heterogeneous acylation was detected at the NH2 terminus of bovine retinal recoverin. The NH2-terminal glycine of each retinal recoverin molecule is linked to one of four different types of acyl groups. The most abundant is myristoleate (14:1), but 14:0, 14:2, and 12:0 acyl residues are also present.  相似文献   

9.
The molecule of photoreceptor Ca(2+)-binding protein recoverin contains four potential Ca(2+)-binding sites of the EF-hand type, but only two of them (the second and the third) can actually bind calcium ions. We studied the interaction of Ca2+ with recoverin and its mutant forms containing point amino acid substitutions at the working Ca(2+)-binding sites by measuring the intrinsic protein fluorescence and found that the substitution of Gln for Glu residues chelating Ca2+ in one (the second or the third) or simultaneously in both (the second and the third) Ca(2+)-binding sites changes the affinity of the protein to Ca2+ ions in different ways. The Gln for Glu121 substitution in the third site and the simultaneous Gln substitutions in the second (for Glu85) and in the third (for Glu121) sites result in the complete loss of the capability of recoverin for a strong binding of Ca(2+)-ions. On the other hand, the Gln for Glu85 substitution only in the second site moderately affects its affinity to the cation. Hence, we assumed that recoverin successively binds Ca(2+)-ions: the second site is filled with the cation only after the third site has been filled. The binding constants for the third and the second Ca(2+)-binding sites of recoverin determined by spectrofluorimetric titration are 3.7 x 10(6) and 3.1 x 10(5) M-1, respectively.  相似文献   

10.
Neurocalcin (molecular weight 23,000 and 24,000) is a newly identified Ca2+ binding protein with three EF-hand domains and has a strong amino acid sequence homology with visinin and recoverin (Terasawa, M., Nakano, A., Kobayashi, R., and Hidaka, H. J. Biol. Chem. In press). We produced antibody against neurocalcin. Immunoblotting showed the presence of neurocalcin in bovine retina as well as brain, suggesting that neurocalcin was a neuron specific Ca2+ binding protein. Immunohistochemistry revealed the expression of neurocalcin in retinal amacrine cells and ganglion cells but not in the photoreceptor layer. This distribution of neurocalcin was quite different from that of visinin and recoverin. Our results suggest that neurocalcin may play an important role in a Ca2+ signal pathway of the nervous system.  相似文献   

11.
Recoverin is an EF-hand Ca(2+)-binding protein that is suggested to control the activity of the G-protein-coupled receptor kinase GRK-1 or rhodopsin kinase in a Ca(2+)-dependent manner. It undergoes a Ca(2+)-myristoyl switch when Ca(2+) binds to EF-hand 2 and 3. We investigated the mechanism of this switch by the use of point mutations in EF-hand 2 (E85Q) and 3 (E121Q) that impair their Ca(2+) binding. EF-hand 2 and 3 display different properties and serve different functions. Binding of Ca(2+) to recoverin is a sequential process, wherein EF-hand 3 is occupied first followed by the filling of EF-hand 2. After EF-hand 3 bound Ca(2+), the subsequent filling of EF-hand 2 triggers the exposition of the myristoyl group and in turn binding of recoverin to membranes. In addition, EF-hand 2 controls the mean residence time of recoverin at membranes by decreasing the dissociation rate of recoverin from membranes by 10-fold. We discuss this mechanism as one critical step for inhibition of rhodopsin kinase by recoverin.  相似文献   

12.
Rhodopsin kinase (GRK1) is a member of G protein-coupled receptor kinase family and a key enzyme in the quenching of photolysed rhodopsin activity and desensitisation of the rod photoreceptor neurons. Like some other rod proteins involved in phototransduction, GRK1 is posttranslationally modified at the C terminus by isoprenylation (farnesylation), endoproteolysis and α-carboxymethylation. In this study, we examined the potential mechanisms of regulation of GRK1 methylation status, which have remained unexplored so far. We found that considerable fraction of GRK1 is endogenously methylated. In isolated rod outer segments, its methylation is inhibited and demethylation stimulated by low-affinity nucleotide binding. This effect is not specific for ATP and was observed in the presence of a non-hydrolysable ATP analogue AMP-PNP, GTP and other nucleotides, and thus may involve a site distinct from the active site of the kinase. GRK1 demethylation is inhibited in the presence of Ca(2+) by recoverin. This inhibition requires recoverin myristoylation and the presence of the membranes, and may be due to changes in GRK1 availability for processing enzymes upon its redistribution to the membranes induced by recoverin/Ca(2+). We hypothesise that increased GRK1 methylation in dark-adapted rods due to elevated cytoplasmic Ca(2+) levels would further increase its association with the membranes and recoverin, providing a positive feedback to efficiently suppress spurious phosphorylation of non-activated rhodopsin molecules and thus maximise senstivity of the photoreceptor. This study provides the first evidence for dynamic regulation of GRK1 α-carboxymethylation, which might play a role in the regulation of light sensitivity and adaptation in the rod photoreceptors.  相似文献   

13.
Guanylyl cyclase-activating proteins (GCAPs) and recoverin are retina-specific Ca(2+)-binding proteins involved in phototransduction. We provide here evidence that in spite of structural similarities GCAPs and recoverin differently change their overall hydrophobic properties in response to Ca(2+). Using native bovine GCAP1, GCAP2 and recoverin we show that: i) the Ca(2+)-dependent binding of recoverin to Phenyl-Sepharose is distinct from such interactions of GCAPs; ii) fluorescence intensity of 1-anilinonaphthalene-8-sulfonate (ANS) is markedly higher at high [Ca(2+)](free) (10 microM) than at low [Ca(2+)](free) (10 nM) in the presence of recoverin, while an opposing effect is observed in the presence of GCAPs; iii) fluorescence resonance energy transfer from tryptophane residues to ANS is more efficient at high [Ca(2+)](free) in recoverin and at low [Ca(2+)](free) in GCAP2. Such different changes of hydrophobicity evoked by Ca(2+) appear to be the precondition for possible mechanisms by which GCAPs and recoverin control the activities of their target enzymes.  相似文献   

14.
Recoverin is a Ca2+-regulated signal transduction modulator found in vertebrate retina that has been shown to undergo dramatic conformational changes upon Ca2+ binding to its two functional EF-hand motifs. To elucidate the differential impact of the N-terminal myristoylation as well as occupation of the two Ca2+ binding sites on recoverin structure and function, we have investigated a non-myristoylated E85Q mutant exhibiting virtually no Ca2+ binding to EF-2. Crystal structures of the mutant protein as well as the non-myristoylated wild-type have been determined. Although the non-myristoylated E85Q mutant does not display any functional activity, its three-dimensional structure in the presence of Ca2+ resembles the myristoylated wild-type with two Ca2+ but is quite dissimilar from the myristoylated E85Q mutant. We conclude that the N-terminal myristoyl modification significantly stabilizes the conformation of the Ca2+-free protein (i.e. the T conformation) during the stepwise transition toward the fully Ca2+-occupied state. On the basis of these observations, a refined model for the role of the myristoyl group as an intrinsic allosteric modulator is proposed.  相似文献   

15.
Cone photoreceptors function under daylight conditions and are essential for color perception and vision with high temporal and spatial resolution. A remarkable feature of cones is that, unlike rods, they remain responsive in bright light. In rods, light triggers a decline in intracellular calcium, which exerts a well studied negative feedback on phototransduction that includes calcium-dependent inhibition of rhodopsin kinase (GRK1) by recoverin. Rods and cones share the same isoforms of recoverin and GRK1, and photoactivation also triggers a calcium decline in cones. However, the molecular mechanisms by which calcium exerts negative feedback on cone phototransduction through recoverin and GRK1 are not well understood. Here, we examined this question using mice expressing various levels of GRK1 or lacking recoverin. We show that although GRK1 is required for the timely inactivation of mouse cone photoresponse, gradually increasing its expression progressively delays the cone response recovery. This surprising result is in contrast with the known effect of increasing GRK1 expression in rods. Notably, the kinetics of cone responses converge and become independent of GRK1 levels for flashes activating more than ∼1% of cone pigment. Thus, mouse cone response recovery in bright light is independent of pigment phosphorylation and likely reflects the spontaneous decay of photoactivated visual pigment. We also find that recoverin potentiates the sensitivity of cones in dim light conditions but does not contribute to their capacity to function in bright light.  相似文献   

16.
Rat brain was found, by immunoblot analysis, to have a protein of Mr 23,000 (P23k) that was clearly different from recoverin and was labeled with an antiserum raised against the NH2-terminus of recoverin. P23k could not be detected by an antiserum raised against the COOH-terminus of recoverin. Blots with 45Ca demonstrated that P23k bound Ca2+. This calciprotein was further purified by Ca(2+)-dependent hydrophobic interaction and ion-exchange chromatography. In SDS polyacrylamide gel electrophoresis, P23k had an apparent Mr of 21,000 in the presence of 10 microM Ca2+ and 23,000 in the absence of Ca2+ (0.1 mM EGTA). The isoelectric point of P23k was 5.6. Ca(2+)-binding analysis indicated that P23k bound 2 moles of Ca2+ per mole of protein and had two binding sites with dissociation constants of 13 microM and 0.2 microM. Purified P23k bound to the crude membrane fractions from the cerebellum, cerebrum and retina in a Ca(2+)-dependent manner. Partial amino acid sequence analysis of proteolytic fragments of P23k revealed the sequence homology between P23k and recoverin. These results suggested that P23k may act as a Ca(2+)-sensitive regulator by forming a complex with its target on the membrane.  相似文献   

17.
Recoverin is a Ca2+-binding protein implicated in the Ca2+-dependent regulation of desensitization of visual receptor rhodopsin in vertebrate retinal rods. Here we report that Ca2+ sensitivity of recoverin regulating rhodopsin phosphorylation increases in the presence of the photoreceptor membranes enriched in raft structures. The observed effect is mediated by a key protein component of raft structures caveolin-1. The presence of recombinant fragment Phe81-Arg101 of the caveolin-1 cytoplasmic domain enhances Ca2+ affinity of recoverin, therefore affecting its Ca2+-dependent regulatory activity.  相似文献   

18.
Intracellular Ca2+ plays an important role in a variety of second messenger cascades. The function of Ca2+ is mediated, in part, by Ca2+-binding proteins such as calmodulin, calretinin, calbindin, neurocalcin, recoverin, and visinin-like proteins (VILIPs). These proteins are highly expressed in rat olfactory receptor neurons (ORNs) and are localized to distinct intracellular regions. In the present study, we have identified another Ca2+-binding protein, hippocalcin, in the rat olfactory epithelium (OE). Olfactory/brain hippocalcin shows high sequence homology with hippocalcins expressed in mice and humans. Hippocalcin was predominantly localized to the olfactory cilia, the site of the initial events of olfactory signal transduction, and was found to regulate the activity of ciliary adenylate cyclases (ACs) and particulate guanylyl cyclases (GCs) in a Ca2+-dependent manner. These data indicate that hippocalcin is expressed in rat ORNs, and is likely to regulate second messenger cascades in a Ca2+-dependent manner.  相似文献   

19.
Guanylyl cyclase activating protein-2 (GCAP-2) is a Ca2+-sensitive regulator of phototransduction in retinal photoreceptor cells. GCAP-2 activates retinal guanylyl cyclases at low Ca2+ concentration (<100 nM) and inhibits them at high Ca2+ (>500 nM). The light-induced lowering of the Ca2+ level from approximately 500 nM in the dark to approximately 50 nM following illumination is known to play a key role in visual recovery and adaptation. We report here the three-dimensional structure of unmyristoylated GCAP-2 with three bound Ca2+ ions as determined by nuclear magnetic resonance spectroscopy of recombinant, isotopically labeled protein. GCAP-2 contains four EF-hand motifs arranged in a compact tandem array like that seen previously in recoverin. The root mean square deviation of the main chain atoms in the EF-hand regions is 2.2 A in comparing the Ca2+-bound structures of GCAP-2 and recoverin. EF-1, as in recoverin, does not bind calcium because it contains a disabling Cys-Pro sequence. GCAP-2 differs from recoverin in that the calcium ion binds to EF-4 in addition to EF-2 and EF-3. A prominent exposed patch of hydrophobic residues formed by EF-1 and EF-2 (Leu24, Trp27, Phe31, Phe45, Phe48, Phe49, Tyr81, Val82, Leu85, and Leu89) may serve as a target-binding site for the transmission of calcium signals to guanylyl cyclase.  相似文献   

20.
Recoverin is an N-myristoylated 23 kDa calcium-binding protein from retina, which modulates the Ca2+-sensitive deactivation of rhodopsin via Ca2+-dependent inhibition of rhodopsin kinase. It was shown by intrinsic and bis-ANS probe fluorescence, circular dichroism, and differential scanning calorimetry that myristoylated recombinant recoverin interacts specifically with zinc ions. Similar to the calcium binding, the binding of zinc to Ca2+-loaded recoverin additionally increases its alpha-helical content, hydrophobic surface area, and environmental mobility/polarity of its tryptophan residues. In contrast to the calcium binding, the binding of zinc decreases thermal stability of the Ca2+-loaded protein. Zn2+-titration of recoverin, traced by bis-ANS fluorescence, reveals binding of a single Zn2+ ion per protein molecule. It was shown that the double-mutant E85Q/E121Q with inactivated Ca2+-binding EF-hands 2 and 3 (Alekseev, A. M.; Shulga-Morskoy, S. V.; Zinchenko, D. V.; Shulga-Morskaya, S. A.; Suchkov, D. V.; Vaganova, S. A.; Senin, I. I.; Zargarov, A. A.; Lipkin, V. M.; Akhtar, M.; Philippov, P. P. FEBS Lett. 1998, 440, 116-118), which can be considered as an analogue of the apo-protein, binds Zn2+ ion as well. Apparent zinc equilibrium binding constants evaluated from spectrofluorimetric Zn2+-titrations of the protein are 1.4 x 10(5) M(-1) (dissociation constant 7.1 microM) for Ca2+-loaded wild-type recoverin and 3.3 x 10(4) M(-1) (dissociation constant 30 microM) for the E85Q/E121Q mutant (analogue of apo-recoverin). Study of the binding of wild-type recoverin to ROS membranes showed a zinc-dependent increase of its affinity for the membranes, without regard to calcium content, suggesting further solvation of a protein myristoyl group upon Zn2+ binding. Possible implications of these findings to the functioning of recoverin are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号