首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xie Y  Zhu WZ  Zhu Y  Chen L  Zhou ZN  Yang HT 《Life sciences》2004,76(5):559-572
Adaptation to intermittent high altitude (IHA) hypoxia can protect the heart against ischemia-reperfusion injury. In view of the fact that both Ca2+ paradox and ischemia-reperfusion injury are associated with the intracellular Ca2+ overload, we tested the hypothesis that IHA hypoxia may protect hearts against Ca2+ paradox-induced lethal injury if its cardioprotection bases on preventing the development of intracellular Ca2+ overload. Langendorff-perfused hearts from normoxic and IHA hypoxic rats were subjected to Ca2+ paradox (5 min of Ca2+ depletion followed by 30 min of Ca2+ repletion) and the functional, biochemical and pathological changes were investigated. The Ca2+ paradox incapacitated the contractility of the normoxic hearts, whereas the IHA hypoxic hearts significantly preserved contractile activity. Furthermore, the normoxic hearts subjected to Ca2+ paradox exhibited a marked reduction in coronary flow, increase in lactate dehydrogenase release, and severe myocyte damage. In contrast, these changes were significantly prevented in IHA hypoxic hearts. We, then, tested and confirmed our hypothesis that the protective mechanisms are mediated by mitochondria ATP-sensitive potassium channels (mitoKATP) and Ca2+/calmodulin-dependent protein kinase II (CaMKII), as the protective effect of IHA hypoxia was abolished by 5-hydroxydecanoate, a selective mitoKATP blocker, and significantly attenuated by KN-93, a CaMKII inhibitor. In conclusion, our studies offer for the first time that IHA hypoxia confers cardioprotection against the lethal injury of Ca2+ paradox and give biochemical evidence for the protective mechanism of IHA hypoxia. We propose that researches in this area may lead a preventive regimen against myocardial injury associated with Ca2+ overload.  相似文献   

2.
以“陇油7号”油菜为实验材料,研究了外源ATP对油菜幼苗耐寒性的影响。结果表明:与单独低温胁迫相比,外源ATP预处理再进行低温胁迫后,油菜幼苗MDA含量、O2-.含量均显著降低,而叶绿素含量、抗氧化酶活性(SOD、POD、CAT、APX)和RBOHD、RBOHF、CPK4、CPK5基因表达均增加;与外源ATP+低温相比,EGTA+外源ATP+低温处理下,MDA含量显著增加,总叶绿素含量、T-AOC酶活性、RBOHD、RBOHF基因表达均显著下降,DMTU+外源ATP+低温处理下,MDA含量显著增加,总叶绿素含量、Ca2+-ATPase酶活性、CPK4、CPK5基因表达均下降,表明外源ATP通过Ca2+和H2O2依赖性机制影响油菜幼苗的耐寒性。  相似文献   

3.
We have studied the changes of the intracellular free calcium concentration ([Ca2+]i) effected by external ATP, which induces formation of inositol trisphosphate, and by the divalent cation ionophores ionomycin and A23187. Both, ATP (40 microM) and ionophores (1-80 mumol/l cells ionomycin; 20-400 mumol/l cells A23187), produced a transient rise of [Ca2+]i which reached its maximum within 15-30 s and declined near resting values (about 200 nM) within 1-3 min. When the [Ca2+]i peak surpassed 500 nM a transient cell shrinkage due to simultaneous activation of Ca2+-dependent K+ and Cl- channels was also observed. The cell response was similar in medium containing 1 mM Ca2+ and in Ca2+-free medium, suggesting that the Ca mobilized to the cytosol comes preferently from the intracellular stores. Treatment with low doses of ionophore (1 mumol/l cells for ionomycin; 20 mumol/l cells for A23187) depressed the response to a subsequent treatment, either with ionophore or with ATP. Treatment with ATP did also inhibit the subsequent response to ionophore, but in this case the inhibition was dependent on time, the stronger the shorter the interval between both treatments. This result suggests that the permeabilization of Ca stores by ATP is transient and that Ca can be taken up again by the intracellular stores. Refill was most efficient when Ca2+ was present in the incubation medium. Addition of either ATP or ionomycin (1-25 mumol/l cells) to cells incubated in medium containing 1 mM Ca2+ decreased drastically the total cell Ca content during the following 3 min of incubation. In the case of ATP the total cell levels of Ca returned to the initial values after 7-15 min, whereas in the case of the ionophore they remained decreased during the whole incubation period. These results indicate that Ca released from the intracellular stores by either ATP or ionophores is quickly extruded by active mechanisms located at the plasma membrane. They also suggest that, under the conditions studied here, with 1 mM Ca2+ outside, the Ca-mobilizing effect of ionophores is stronger in endomembranes than in the plasma membrane.  相似文献   

4.
The effects of anoxia were studied in freshly isolated rat hepatocytes maintained in agarose gel threads and perfused with Krebs-Henseleit bicarbonate buffer (KHB). Cytosolic free calcium (Ca2+i) was measured with aequorin, intracellular sodium (Na+i) with SBFI, intracellular pH (pHi) with BCECF, lactic dehydrogenase (LDH) by the increase in NADH absorbance during lactate oxidation to pyruvate, ATP by 31P NMR spectroscopy in real time, and intracellular free Mg2+ (Mg2+i) from the chemical shift of beta-ATP relative to alpha-ATP in the NMR spectra. Anoxia was induced by perfusing the cells with KHB saturated with 95% N2, 5% CO2. After 1 h of anoxia, beta-ATP fell 66%, and 85% after 2 h, while the Pi/ATP ratio increased 10-fold from 2.75 to 28.3. Under control conditions, the resting cytosolic free calcium was 127 +/- 6 nM. Anoxia increased Ca2+i in two distinct phases: a first rise occurred within 15 min and reached a mean value of 389 +/- 35 nM (p less than 0.001). A second peak reached a maximum value of 1.45 +/- 0.12 microM (p less than 0.001) after 1 h. During the first hour of anoxia, Na+i increased from 15.9 +/- 2.4 mM to 32.2 +/- 1.2 mM (p less than 0.001), Mg2+i doubled from 0.51 +/- 0.05 to 1.12 +/- 0.01 mM (p less than 0.001), and pHi decreased from 7.41 +/- 0.03 to 7.06 +/- 0.1 (p less than 0.001). LDH release doubled during the first hour and increased 6-fold during the second hour of anoxia. Upon reoxygenation, ATP, Ca2+i, Mg2+i, Na+i, and LDH returned near the control levels within 45 min. To determine whether the increased LDH release was related to the rise in Ca2+i, and whether the increased Ca2+i was caused by Ca2+ influx, the cells were perfused with Ca(2+)-free KHB (+ 0.1 mM EGTA) during the anoxic period. After 2 h of anoxia in Ca(2+)-free medium, beta-ATP again fell 90%, but Ca2+i, after the first initial peak, fell below control levels, and LDH release increased only 2.7-fold. During reoxygenation, Ca2+i, ATP, Na+i, and LDH returned near the control levels within 45 min. These results suggest that the rise in Ca2+i induced by anoxia is caused by an influx of Ca2+ from the extracellular fluid, and that LDH release and cell injury may be related to the resulting rise in Ca2+i.  相似文献   

5.
Myocytes have been isolated from adult rat hearts since 1969. The early preparations exhibited the Ca2+ paradox. Over the ensuing years, numerous groups have reported the isolation of Ca2+ tolerant cardiac myocytes. In the present review, detailed comparisons have been made of the yields, viability, and relative Ca2+ tolerance of these different myocyte preparations. The factors to which these investigators attributed the increased Ca2+ tolerance are considered, and the current information regarding the mechanism of the Ca2+ paradox is reviewed. A method is given which incorporates several of the modifications described. By this method 40-60% of the ventricular weight was disaggregated into single myocytes within 45 min after the sacrifice of the rats. Viability without further purification was 82 +/- 0.7% (n = 35) and Nai+/Ki+ ratios were normal. Upon incubation with 2 mM Ca2+ for 1 hr at 37 degrees C, viability decreased by 6% and ATP and creatine phosphate remained at physiological levels. The preparation is very stable since upon incubation in culture medium containing fetal bovine serum and 1.25 mM free Ca2+ at 25 degrees C for 20 hr, viability decreased only 13% (rod-shaped and trypan blue criteria). The factors which contribute to the quality and Ca2+ tolerance of this preparation are discussed.  相似文献   

6.
Oxidative stress is involved in the pathogenesis of ischemia-reperfusion during myocardial transplantation. Therefore, graft preservation solutions may be improved by supplementation with antioxidants to minimize graft dysfunction caused by cold ischemic injury. Propolis is a polyphenol-rich substance which has an important antioxidant activity. The protective effect of propolis against oxidative stress induced by prolonged cold preservation of heart was investigated. Mice were subjected to a hypothermic model of ischemia in which hearts were preserved for 24 h at 4 °C in Krebs-Hensleit (KH) solution in the absence or presence of propolis concentrations (50, 150 and 250 μg/ml). Levels of released Lactate dehydrogenase (LDH), Creatine phosphokinase (CPK) and Troponine-I (Trop I) were assessed in the preservation solution and histological assessement of heart ischemia injuries was performed. Oxidative stress biomarkers malondialdehyde (MDA) and advanced oxidation protein products (AOPP) and antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were assessed in cardiac tissue. Mitochondria were isolated from stored hearts and production of reactive oxygen species (ROS) was tested. Propolis supplementation protected efficiently hearts during preservation by reducing significantly levels of lipids and proteins oxidation and restoring activities of antioxidant enzymes. Also, propolis preserved tissue integrity altered by hypothermic ischemia in a concentration-dependent manner. Propolis reduced significantly the rate of H2O2 produced by mitochondrial respiration, the best antioxidant effect being obtained at the highest propolis concentration (250 μg/ml). Algerian propolis is a non-temperature sensitive scavenger that protects heart from oxidative damage induced by prolonged hypothermic ischemia.  相似文献   

7.
The effects of fructose on the intracellular ionic changes evoked by anoxia were studied in freshly isolated rat hepatocytes maintained in agarose gel threads and perfused with Krebs-Henseleit bicarbonate buffer (KHB). Cytosolic free calcium (Ca2+i) was measured with aequorin, intracellular sodium (Na+i) with sodium-binding benzofuran isophthalate, intracellular pH (pHi) with 2'-7'-bis(carboxyethyl)-5,6-carboxyfluorescein, lactic dehydrogenase (LDH) by the increase in NADH absorbance during lactate oxidation to pyruvate, and viability by trypan blue exclusion. ATP, Pi, phosphomonoesters, and the cell phosphorylation potential assessed by the reciprocal of the Pi/ATP ratio were measured by 31P NMR spectroscopy in real time. Intracellular free Mg2+ (Mg2+i) was calculated from the chemical shift of beta-ATP relative to alpha-ATP in the NMR spectra. Anoxia was induced by perfusing the cells with KHB saturated with 95% N2, 5% CO2. When the perfusate contained 5 mM glucose as substrate, anoxia caused a fall in ATP, a rise in Pi, and in the Pi/ATP ratio, a biphasic increase in Ca2+i that reached 1.45 +/- 0.42 microM and a 6-fold increase in LDH. When 15 mM fructose was used as substrate during the anoxic period, intracellular ATP decreased much faster than with glucose, Pi did not increase, and the concentration of phosphomonoesters increased 2.5-fold. During the first hour of anoxia, the Pi/ATP ratio was higher in the fructose than in the glucose group indicating that the hepatocyte phosphorylation potential and ATP decreased faster and to lower levels with fructose than with glucose. On the other hand, ATP and the phosphorylation potential of the fructose group increased during the second hour of anoxia, in contrast to their continuous decline in the glucose group. The major surge in Ca2+i was depressed 52% when glucose was replaced by fructose: Ca2+i reached only 0.7 +/- 0.2 microM instead of 1.45 +/- 0.42 microM (p less than 0.01). Anoxia also caused an increase in Na+i and an intracellular acidosis. The rise in Na+i was significantly greater with fructose than with glucose. Na+i rose from a control value of 15.9 +/- 2.4 to 32.2 +/- 0.4 mM with glucose and to 48.7 +/- 0.7 mM with fructose (p less than 0.001). The decrease in pHi from a control value of 7.43 +/- 0.03 was consistently greater and faster with fructose than with glucose: 6.59 +/- 0.03 and 7.04 +/- 0.01, respectively. At the same time, fructose completely suppressed LDH release and reduced the loss of viability produced by anoxia from 27.7 +/- 2.9 to 14 +/- 3.1% (p less than 0.05).  相似文献   

8.
The bioenergetic basis by which the Krebs cycle substrate pyruvate increased cardiac contractile function over that observed with the Embden-Meyerhof substrate glucose was investigated in the isovolumic guinea pig heart. Alterations in the content of the high energy phosphate metabolites and the rate of high energy phosphate turnover were measured by 31P NMR. These were correlated to the changes in contractile function and rates of myocardial oxygen consumption. Maximum left ventricular developed pressure (LVDP) and high energy phosphates were observed with 16 mM glucose or 10 mM pyruvate. In hearts perfused with 16 mM glucose, the intracellular phosphocreatine (PCr) concentration was 15.2 +/- 0.6 mM with a PCr/Pi ratio of 10.3 +/- 0.9. The O2 consumption was 5.35 mumol/g wet weight/min, and these hearts exhibited a LVDP of 97 +/- 3.7 mm Hg at a constant paced rate of 200 beats/min. In contrast, when hearts were switched to 10 mM pyruvate, the PCr concentration was 18.3 +/- 0.4 mM, the PCr/Pi ratio was 30.4 +/- 2.2, the O2 consumption was 6.67 mumol/g wet weight/min, and the LDVP increased to 125 +/- 3.3 mm Hg. From NMR saturation transfer experiments, the steady-state flux of ATP synthesis from PCr was 4.9 mumol/s/g of cell water during glucose perfusion and 6.67 mumol/s/g of cell water during pyruvate perfusion. The flux of ATP synthesis from ADP was measured to be 0.99 mumol/s/g of cell water with glucose and calculated to be 1.33 mumol/s/g of cell water with pyruvate. These results suggest that pyruvate quite favorably alters myocardial metabolism in concert with the increased contractile performance. Thus, as a mechanism to augment myocardial performance, pyruvate appears to be unique.  相似文献   

9.
An effect of the high sodium gradient during "calcium paradox" and postischemic reperfusion has been studied. A decrease of Na/Ca exchange by high sodium gradient (200 mM NaCl in the perfusion solution) resulted in the reduction of myoglobin release from the heart during "calcium paradox". High sodium concentration solution (200 mM) increased protective effect of ATP during "calcium paradox". Exogenous phosphocreatine (100 mumol/mol) increased myoglobin release from the heart. During perfusion of the heart by high sodium concentration, phosphocreatine efficiently decreased myoglobin release from the heart during "calcium paradox". Exogenous ATP (as Na-pump activator) and high Na+ concentration solution (180 mM) prevented the LDH release from the myocardium, decreased ATP hydrolysis, inhibited Ca influx, maintained total adenine nucleotides, phosphate potential, energy charge of the cardiomyocytes.  相似文献   

10.
The intent of this study was to observe the effects of different treadmill running programs upon selected biochemical properties of soleus muscle from young rats. Young 10 day litter-mates were assigned to endurance (E), spring (S) and control (C) groups. Each was partitioned into either 21 or 51 day exercising groups and 10 day controls. For C the myofibril ATPase activity at 21 and 51 days were lower than 10 day activity (p less than or equal to 0.05). In the 51 day E group ATPase activity (0.378 +/- 0.009 mumol Pi X mg-1 X min-1) was greater than at 10 and 21 days (0.307 +/- 0.006 and 0.323 +/- 0.008 mumol Pi X mg-1 X min-1) (p less than or equal to 0.05). No change occurred in the S group from 10 to 21 and 51 days (p greater than or equal to 0.05). Both the 21 and 51 day S (0.318 +/- 0.011 and 0.399 +/- 0.010 mumol Pi X mg-1 X min-1) and E (0.323 +/- 0.008 and 0.378 +/- 0.009 mumol Pi X mg-1 X min-1) groups had higher activity compared to the C group (0.193 +/- 0.029 and 0.172 +/- 0.031 mumol Pi X mg-1 X min-1) (p less than or equal to 0.05). Maturation (10--51 day) resulted in a lowered sarcoplasmic reticulum (SR) yield and Ca2+ binding (p less than or equal to 0.05) while Ca2+ uptake ability did not change (p greater than or equal to 0.05). SR yield, Ca2+ binding and uptake were not altered with S training (p greater than or equal to 0.05). The E training resulted in greater Ca2+ uptake at 51 days compared to C and S (p less than or equal to 0.05), with no change in Ca2+ binding (p greater than or equal to 0.05). The data suggest that E training alters the normal development pattern of young rat soleus muscle.  相似文献   

11.
Rat hearts were depleted of Ca2+ (less than 10(-9) M) for 10 min, followed by 15 min of Ca2+-repletion. The calcium paradox injury occurs during Ca2+-repletion, after a period of calcium depletion. The calcium paradox injury was assessed by percent recovery (hemodynamics, [Ca2+]i, and energy levels) during Ca2+-repletion. A decrease in Na+ concentration during Ca2(+)-depletion did not allow for recovery during Ca2(+)-repletion, however 2.5% and 5% ethanol during Ca2(+)-depletion allowed for an approximate 50% recovery during Ca2(+)-repletion. A combination of ethanol (2.5% or 5%) with a low extracellular Na+ concentration (88 mM) allowed for complete recovery. Ethanol prevented a depletion of diastolic [Ca2+]i during Ca2(+)-depletion, and allowed for a return of normal diastolic [Ca2+]i during Ca2(+)-repletion. Ethanol modulates the activity of the Na+/Ca2+ exchanger and protects against the Ca2(+)-paradox injury.  相似文献   

12.
L L Chudej  J R Koke  N Bittar 《Cytobios》1990,63(252):41-53
Infusion of superoxide dismutase (SOD) and catalase (CAT) into the coronary circulation protects myocardial tissue from free radical injury and improves recovery of myocardial function after a short episode of ischaemia. To investigate the ultrastructure of myocardium treated with SOD and CAT, these enzymes were injected into the left atrium of dogs prior to and during 15 min of regional myocardial ischaemia, allowing 30 min of reperfusion, and then fixing the tissue for electron microscopy. The exogenous SOD + CAT was found to promote recovery of both function and structure in these hearts. In addition, electron dense material was unexpectedly found in vesicles of capillary endothelia, between capillaries and myocyte, and in vesicles within myocytes. This occurred only in hearts treated with SOD and/or CAT, suggesting SOD and CAT was concentrated and transported across the capillary endothelium and into myocytes. The rate of transcytosis, as measured by the number of intra-endothelial vesicles, was increased in tissue subjected to ischaemia and reperfusion in the presence of SOD and CAT. These observations suggest transcytosis of SOD and CAT is an important part of the process by which these enzymes provide protection to myocardium during reperfusion after ischaemia.  相似文献   

13.
The effects of ouabain (10(-7) to 10(-5) M) on the interrelationship between cell-cell contacts, resting tension, and creatine phosphokinase (CK) leakage owing to myocardial cell injury during Ca2+ paradox were studied in isolated perfused rat heart preparations. After perfusing for 15 min with Ca2+ -containing medium, hearts were perfused for 5 min with Ca2+ -free medium followed by a reperfusion with Ca2+ -containing medium for 5 min. This resulted in a transient increase in resting tension and a substantial release of CK into the perfusate during the calcium reperfusion period. These changes were accompanied by extensive structural damage in the myocardial cell, including formation of contraction bands, swelling of the mitochondria, and cell-cell separation. Inclusion of 10(-5) M ouabain for 5 min in the Ca2+ -containing perfusion medium prior to the start of Ca2+ -free perfusion resulted in a higher and sustained resting tension that was accompanied by a reduced loss of CK from the heart during Ca2+ reperfusion. In a histological examination of these ouabain exposed hearts, most of the structural changes owing to calcium paradox were apparent, but the cell-cell contacts were maintained. The results are consistent with the hypothesis that the loss of cell-cell contacts in the intercalated disc during the occurrence of Ca2+ paradox may be the cause of the delayed decline in the resting tension and is only partially responsible for the loss of CK. These differences in myocardial changes during Ca2+ paradox with or without ouabain may be due to the retention of calcium at certain crucial sites under the influence of ouabain.  相似文献   

14.
钙对低温胁迫的烟草幼苗某些酶活性的影响   总被引:1,自引:0,他引:1  
用CaCl2浸种处理烟草种子,研究了钙对烟草幼苗某些酶活性的影响。结果表明:CaCl2浸种能够提高烟草幼苗结合态钙和膜保护酶活性,降低膜透性和MDA(丙二醛)含量。在低温胁迫条件下,Ca2+浸种处理的烟草幼苗SOD、CAT和POD等保护酶活性下降程度较未经处理的轻,细胞相对电导率低。恢复生长后,幼苗膜透性和保护酶活性恢复较快。CaM(钙调素)特异性抑制剂CPZ(氯丙嗪)能部分抑制Ca2+提高SOD、CAT和POD活性的作用。  相似文献   

15.
Although perfusion of the heart with calcium-free medium for a brief period followed by reperfusion with calcium-containing medium results in marked structural derangements (calcium paradox), the mechanisms for this cell damage are far from clear. Since activation of lysosomal enzymes has been associated with pathological damage, it was the purpose of this study to examine alterations in the activities of several lysosomal enzymes in rat hearts subjected to calcium paradox. No significant changes in the activities of beta-acetylglucosaminidase, beta-galactosidase, alpha-mannosidase, or acid phosphatase were seen in the homogenates of hearts exposed to the calcium paradox. However, there were dramatic alterations in the lysosomal enzyme activities in the sedimentable and nonsedimentable fractions during calcium paradox. The lysosomal enzyme activities were also detected in the perfusate collected during reperfusion with calcium-containing medium. These changes occurred during the reperfusion period since no alterations were apparent after calcium-free perfusion and were dependent upon the time of reperfusion with medium containing Ca2+ as well as the time of perfusion with Ca2+ -free medium before inducing Ca2+ paradox. These data indicate that alterations in lysosomal enzymes owing to reinstitution of calcium in Ca2+-deprived hearts may occur as a part of cardiac damage and general cellular disintegration.  相似文献   

16.
To explore the possibility of overcoming the highly phytotoxic effect of SO(2) and salt stress, we introduced the maize Cu/ZnSOD and/or CAT genes into chloroplasts of Chinese cabbage (Brassica campestris L. ssp. pekinensis cv. Tropical Pride) (referred to as SOD, CAT and SOD+CAT plants). SOD+CAT plants showed enhanced tolerance to 400 ppb SO(2), and visible damage was one-sixth that of wild-type (CK) plants. In addition, when SOD+CAT plants were exposed to a high salt treatment of 200 mM NaCl for 4 weeks, the photosynthetic activity of the plants decreased by only 6%, whereas that of CK plants decreased by 72%. SOD plants had higher total APX and GR activities than CK plants. As expected, SOD plants showed levels of protection from SO(2) and salt stress that were moderately improved compared to CK plants. However, CAT plants showed inhibition of APX activity and provided only limited improvements in plant stress tolerance. Moreover, SOD+CAT plants accumulated more K(+), Ca(2+) and Mg(2+) and less Na(+) in their leaves compared with those of CK plants. These results suggest that the expression of SOD and CAT simultaneously is suitable for the introduction of increased multiple stress protection.  相似文献   

17.
The present study was undertaken to investigate the protective effect of H2S against myocardial ischemia-reperfusion (I/R) injury and its possible mechanism by using isolated heart perfusion and patch clamp recordings. Rat isolated hearts were Langendorff-perfused and subjected to a 30-minute ischemia insult followed by a 30-minute reperfusion. The heart function was assessed by measuring the LVDP, +/-dP/dt max, and the arrhythmia score. The results showed that the treatment of hearts with a H2S donor (40 micromol/L NaHS) during reperfusion resulted in significant improvement in heart function compared with the I/R group (LVDP recovered to 85.0% +/- 6.4% vs. 35.0% +/- 6.1%, +dP/dt max recovered to 80.9% +/- 4.2% vs. 43.0% +/- 6.4%, and -dP/dt max recovered to 87.4% +/- 7.3% vs. 53.8% +/- 4.9%; p < 0.01). The arrhythmia scores also improved in the NaHS group compared with the I/R group (1.5 +/- 0.2 vs. 4.0 +/- 0.4, respectively; p < 0.001). The cardioprotective effect of NaHS during reperfusion could be blocked by an ATP-sensitive potassium channel (K ATP) blocker (10 micromol/L glibenclamide). In single cardiac myocytes, NaHS increased the open probability of K ATP channels from 0.07 +/- 0.03 to 0.15 +/- 0.08 after application of 40 mumol/L NaHS and from 0.07 +/- 0.03 to 0.36 +/- 0.15 after application of 100 mumol/L NaHS. These findings provide the first evidence that H2S increases the open probability of K ATP in cardiac myocytes, which may be responsible for cardioprotection against I/R injury during reperfusion.  相似文献   

18.
S Wu  X C Yu  J Shan  T M Wong  C F Chen  K T Pang 《Life sciences》2001,68(25):2853-2861
The present study was designed to compare the cardiac actions of the extract and individual components, tetrandrine (Tet) and fangchinoline (Fan), of Radix stephaniae tetrandrae (RST). We measured the electrically induced [Ca2+]i transient in single rat ventricular myocytes and protein release following perfusion with a Ca2+ free solution (the Ca2+ paradox) from the isolated perfused rat heart, both of which are known to relate to Ca2+ influx. We found that Tet inhibited both electrically induced [Ca2+]i transient and protein release during the Ca2+ paradox, while Fan had no significant effects. The RST extract containing 9% Tet and 6% Fan by weight also affected the [Ca2+]i transient, and was only slightly, though significantly, less effective/potent than Tet alone. On the other hand, RST extract had a significantly greater inhibitory effect on protein release during the Ca2+ paradox than Tet alone. The observations suggest that the RST extract, which contains a mixture of components, may have more potent effects in the heart than its main active component.  相似文献   

19.
The rate of phosphorylation of the Ca2+-dependent ATPase of sarcoplasmic reticulum vesicles by ITP and ATP was studied using a millisecond mixing and quenching device. The rate of phosphorylation was slower when the vesicles were preincubated in a Ca2+-free medium than when preincubated with Ca2+, regardless of the substrate used and of the pH of the medium. When the vesicles were preincubated with Ca2+ at pH 7.4 an overshoot of phosphorylation was observed in the presence of ITP. The overshoot was abolished when the pH of the medium was decreased to 6.0 or when the vesicles were preincubated in a Ca2+-free medium. Using vesicles preincubated with Ca2+ the apparent Km for ITP found was 2.5 mM at pH 6.0 and 1.0 mM at pH 7.4. The Vmax observed (77 mumol g-1 s-1) did not change with the pH of the medium. Both at pH 6.0 and 7.4 the apparent Km for ATP was 3 microM when preincubated in a Ca2+-free medium. At pH 6.0 the Vmax for ATP varied from 96 to 33 mumol g-1 s-1 depending on whether the vesicles were preincubated in the presence or absence of Ca2+. At pH 7.4 the Vmax for ATP was 90 mumol g-1 s-1 in both conditions. The rate of phosphorylation of the vesicles was dependent on the relative Ca2+ and Mg2+ concentrations of the reaction medium regardless of the substrate used.  相似文献   

20.
F U Reiffen  M Gratzl 《Biochemistry》1986,25(15):4402-4406
Recently we found that Ca2+ within chromaffin vesicles is largely bound [Bulenda, D., & Gratzl, M. (1985) Biochemistry 24, 7760-7765]. In order to explore the nature of these bonds, we analyzed the binding of Ca2+ to the vesicle matrix proteins as well as to ATP, the main nucleotide present in these vesicles. The dissociation constant at pH 7 is 50 microM (number of binding sites, n = 180 nmol/mg of protein) for Ca2+-protein bonds and 15 microM (n = 0.8 mumol/mumol) for Ca2+-ATP bonds. When the pH is decreased to more physiological values (pH 6), the number of binding sites remains the same. However, the affinity of Ca2+ for the proteins decreases much less than its affinity for ATP (dissociation constant of 90 vs. 70 microM). At pH 6 monovalent cations (30-50 mM) as well as Mg2+ (0.1-0.5 mM), which are also present within chromaffin vesicles, do not affect the number of binding sites for Ca2+ but cause a decrease in the affinity of Ca2+ for both proteins and ATP. For Ca2+ binding to ATP in the presence of 0.5 mM Mg2+ we found a dissociation constant of 340 microM and after addition of 35 mM K+ a dissociation constant of 170 microM. Ca2+ binding to the chromaffin vesicle matrix proteins in the presence of 0.5 mM Mg2+ is characterized by a Kd of 240 microM and after addition of 15 mM Na+ by a Kd of 340 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号