首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H2 relaxin (relaxin) is a member of the insulin–relaxin superfamily and exhibits several non-reproductive functions in addition to its well-known properties as a pregnancy hormone. Over the years, the therapeutic potential of relaxin has been examined for a number of conditions. It is currently in phase III clinical trials for the treatment of acute heart failure. The 53 amino acid peptide hormone consists of two polypeptide chains (A and B) which are cross-linked by two inter-chains and one intra-A chain disulfide bridge. Although its cognate receptor is relaxin family peptide receptor (RXFP) 1, relaxin is also able to cross-react with RXFP2, for which the native ligand is INSL3. The “RXXXRXXI” motif in the B-chain of H2 relaxin is responsible for primary binding to LRR of the RXFP1 receptor (Büllesbach and Schwabe, J Biol Chem 280:14051–14056, 2005). Previous RXFP2 receptor mutation and molecular modelling studies strongly suggest that, in addition to this motif, the Trp-B28 residue in the B-chain is responsible for H2–RXFP2 interaction. To confirm this finding, here we have mutated H2 relaxin in which Trp-B28 was replaced with alanine. The synthetic relaxin analogue was then tested on cells expressing either RXFP1 or 2 to determine the affinity and potency for the respective receptors. Our results confirm that Trp-B28 in the B-chain is crucial for binding and activating RXFP2, but not for RXFP1.  相似文献   

2.
Tang JG  Wang ZH  Tregear GW  Wade JD 《Biochemistry》2003,42(9):2731-2739
Relaxin is a small 6 kD two-chain peptide member of the insulin superfamily that is principally produced in the corpus luteum of the ovary and which plays a key role in connective tissue remodeling during parturition. Like insulin, it is produced on the ribosome as preprohormone that undergoes oxidative folding and subsequent proteolytic processing to yield the mature insulin-like peptide. In contrast to the now considerable insight into insulin chain folding and oxidation, comparatively little is known about the folding pathway of relaxin. A series of synthetic pairwise serine substituted relaxin A-chain cysteine analogues was prepared, and their oxidation behavior was studied both on their own and in the presence of native relaxin B-chain. It was observed that native S-reduced A-chain oxidized rapidly to a bicyclic product, whereas individual formation of each of the intramolecular disulfide bonds between Cys11 and Cys24 and the native Cys10 and Cys15 was considerably slower. Curiously, the non-native, isomeric Cys11-Cys15 disulfide bond formed most rapidly, although circular dichroism spectroscopy analysis showed this product to be devoid of secondary structure. This suggested that it may in fact be an intermediate in the subsequent formation of the native Cys10-Cys15 intramolecular disulfide. Combination of the native A-chain with the B-chain proceeded rapidly as compared with the A-chain analogue that lacked the intramolecular disulfide bond suggesting that this latter element is required as a first step in the folding process. It is therefore probable that relaxin is generated from its constituent A- and B-chains in a stepwise organization manner similar to that of insulin chain combination and folding. Further studies showed that the efficiency of combination of A-chain to B-chain was not markedly influenced by reaction temperature and that a reasonable yield of relaxin could be obtained on combination of the preoxidized A-chain with the S-reduced B-chain.  相似文献   

3.
Relaxin is a member of the insulin superfamily and has many biological actions including angiogenesis and collagen degradation. It is a 6 kDa peptide hormone consisting of two peptide chains (A and B) tethered by two disulphide bonds. Past structure-function relationship studies have shown the key receptor binding site of relaxin to be principally situated within the B-chain alpha-helix. Molecular dynamic simulations were performed to aid the design of conformationally constrained relaxin B-chain analogues that possess alpha-helical structure and relaxin-like activity. Restraints included disulphide bonds, both single and double, and lactam bonds. Each peptide was prepared by solid phase synthesis and, following purification, subjected to detailed conformational analysis by circular dichroism spectroscopy. Of 15 prepared relaxin B-chain mimetics, one was able to mimic the secondary structure of the native ligand as indicated by biomolecular recognition/interaction analysis using surface enhanced laser desorption ionization mass spectroscopy together with a relaxin antibody. However, none of the mimetics possess characteristic relaxin-like biological activity which strongly indicates that the pharmacophore comprises additional structural elements other than the relaxin B-chain alpha-helix. These findings will assist in the design and preparation of novel relaxin agonists and antagonists.  相似文献   

4.
The primary structure of ovine Leydig cell insulin-like peptide (Ley I-L) was recently deduced from the corresponding cDNA sequence. It consists of two peptide chains and three disulphide bonds in an arrangement similar to both relaxin and insulin. As in relaxin B-chain, an Arg-X-X-X-Arg sequence exists within the Ley I-L B-chain although it is located four residues towards the C-terminus from the corresponding position within relaxin. This sequence of amino acids is known to be essential for relaxin biological activity and its presence in Ley I-L suggested that the peptide might possess a relaxin-like function. Ovine Ley I-L was assembled by Fmoc-solid-phase synthesis of the separate chains followed by their combination in solution at high pH. The purity and identity of the chain-combined peptide was confirmed by chemical characterization including mass spectrometry. At physiological concentrations, the peptide was shown not to possess relaxin-like activity in the rat isolated atrial chronotropic and inotropic assay. This strongly suggests that Ley I-L is not a relaxin in the sheep. In order to explore further a possible structural relationship between Ley I-L and relaxin, we prepared a synthetic analogue of ovine Ley I-L containing a single replacement of B-chain residue 12, His, with Arg. This was found to possess significant relaxin-like chronotropic and inotropic activity demonstrating that the tertiary structure of Ley I-L is similar to that of relaxin and highlighting the key requirement for the five-residue sequence, Arg-X-X-X-Arg, to be present in position B12-16 for characteristic relaxin activity.  相似文献   

5.
The sequence of the B-chain of relaxin, and ovarian peptide hormone isolated from ovaries of pregnant sows, has been shown to have the following primary structure: PCA-Ser-Thr-Asn-Asp-Phe-Ile-Lys-Ala-Cys-Gly-Arg-Glu-Leu-Val-Arg-Leu-Trp-Val-Glu-Ile-Cys-Gly-Val-Trp-Ser (2820 daltons). The heterogeneity of relaxin observed during purification procedures is likely to be due to variations in the C-terminal region of the B-chain, in particular the substitution of Gln for Glu20, and the possible addition of arginine or serylarginine at the C terminus. The B-chain exhibited a distribution of sulfhydryl residues relative to one another that is identical to that found in the B-chain of insulin. A similar analogy has already been demonstrated for the A-chains of relaxin and insulin.  相似文献   

6.
The recently identified protein, insulin 3 (INSL3), has structural features that make it a bona fide member of the insulin superfamily. Its predicted amino acid sequence contains the classic two-peptide chain (A- and B-) structure with conserved cysteine residues that results in a disulphide bond disposition identical to that of insulin. Recently, the generation of insl3 knockout mice has demonstrated that testicular descent is blocked due to the failure of a specific ligament, the gubernaculum, to develop. The mechanism by which INSL3 exerts its action on the gubernaculum is currently unknown. The purpose of this study was to, for the first time, synthesize rat INSL3 and test its action on organ cultures of foetal rat gubernaculum. INSL3 also contains a cassette of residues Arg-X-X-X-Arg within the B-chain, a motif that is essential for characteristic activity of another related member of the superfamily, relaxin. Hence, the relaxin activity of rat INSL3 was also tested in two different relaxin bioassays. The primary structure of rat INSL3 was determined by deduction from its cDNA sequence and successfully prepared by solid phase peptide synthesis of the two constituent chains followed by their combination in solution. Following confirmation of its chemical integrity by a variety of analytical techniques, circular dichroism spectroscopy confirmed the presence of high beta-turn and alpha-helical content, with a remarkable spectral similarity to the synthetic ovine INSL3 peptide and to synthetic rat relaxin. The synthetic rat INSL3 bound with very low affinity to rat relaxin receptors and had no activity in a relaxin bioassay. Furthermore, it did not augment or antagonize relaxin activity. The rat INSL3 did however induce growth of foetal rat gubernaculum in whole organ cultures demonstrating that INSL3 has a direct action on this structure.  相似文献   

7.
The ovarian peptide hormone relaxin consists, like insulin, of one A- and one B-chain linked by two disulfide bonds. A peptide, isolated from a tryptic digest of the purified B-chain by high-pressure liquid chromatography (HPLC), was examined with the aid of carboxypeptidase C and a pyrrolidonecarboxylyl peptidase. In conjunction with amino acid analysis it could be demonstrated that pyrrolidonecarboxylic acid occupies the N-terminal position of a peptide with the amino acid composition Asp2, Ser, Thr, Phe, Ile, Lys. The appearance of a pyroglutamyl residue in a two-chain hormone is an interesting and unusual feature which has not yet been reported in a similar structure.  相似文献   

8.
Relaxin-like bioactivity of ovine Insulin 3 (INSL3) analogues.   总被引:2,自引:0,他引:2  
Relaxin is an insulin-like peptide consisting of two separate chains (A and B) joined by two inter- and one intrachain disulfide bonds. Binding to its receptor requires an Arg-X-X-X-Arg-X-X-Ile motif in the B-chain. A related member of the insulin superfamily, INSL3, has a tertiary structure that is predicted to be similar to relaxin. It also possesses an Arg-X-X-X-Arg motif within its B-chain, although this is displaced by four amino acids towards the C-terminus from the corresponding position within relaxin. We have previously shown that synthetic INSL3 itself does not display relaxin-like activity although analogue (Analogue A) with an introduced arginine residue in the B-chain giving it an Arg cassette in the exact relaxin position does possess weak activity. In order to identify further the structural features that impart relaxin function, solid phase peptide synthesis was used to prepare three additional analogues for bioassay. Each of these contained point substitutions within the arginine cassette. Analogue D contained the full human relaxin binding cassette, Analogue G consisted of the native INSL3 sequence containing an Arg to Ala substitution, and Analogue E was a further modification of Analogue A, with the same substitution. Each analogue was fully chemically characterized by a number of criteria. Detailed circular dichroism spectroscopy analyses showed that the changes caused little alteration of secondary structure and, hence, overall conformation. However, each analogue displayed only weak relaxin-like activity. These results indicate that while the arginine cassette is vital for relaxin-like activity, there are additional, as yet unidentified structural requirements for relaxin binding.  相似文献   

9.
Relaxin-3 is a member of the human relaxin peptide family, the gene for which, RLN3, is predominantly expressed in the brain. Mapping studies in the rodent indicate a highly developed network of RLN3, RLN1, and relaxin receptor-expressing cells in the brain, suggesting that relaxin peptides have important functional roles in the central nervous system. A regioselective disulfide-bond synthesis protocol was developed and used for the chemical synthesis of human (H3) relaxin-3. The selectively S-protected A and B chains were combined by stepwise formation of each of the three insulin-like disulfides via aeration, thioloysis, and iodolysis. Judicious positioning of the three sets of S-protecting groups was crucial for acquisition of synthetic H3 relaxin in a good overall yield. The activity of the peptide was tested against relaxin family peptide receptors. Although the highest activity was demonstrated on the human relaxin-3 receptor (GPCR135), the peptide also showed high activity on relaxin receptors (LGR7) from various species and variable activity on the INSL3 receptor (LGR8). Recombinant mouse prorelaxin-3 demonstrated similar activity to H3 relaxin, suggesting that the presence of the C peptide did not influence the conformation of the active site. H3 relaxin was also able to activate native LGR7 receptors. It stimulated increased MMP-2 expression in LGR7-expressing rat ventricular fibroblasts in a dose-dependent manner and, following infusion into the lateral ventricle of the brain, stimulated water drinking in rats, activating LGR7 receptors located in the subfornical organ. Thus, H3 relaxin is able to interact with the relaxin receptor LGR7 both in vitro and in vivo.  相似文献   

10.
Diethylenetriamine pentaacetic acid (DTPA) is a popular chelator agent for enabling the labeling of peptides for their use in structure-activity relationship study and biodistribution analysis. Solid phase peptide synthesis was employed to couple this commercially available chelator at the N-terminus of either the A-chain or B-chain of H2 relaxin. The coupling of the DTPA chelator at the N-terminus of the B-chain and subsequent loading of a lanthanide (europium) ion into the chelator led to a labeled peptide (Eu-DTPA-(B)-H2) in low yield and having very poor water solubility. On the other hand, coupling of the DTPA and loading of Eu at the N-terminus of the A-chain led to a water-soluble peptide (Eu-DTPA-(A)-H2) with a significantly improved final yield. The conjugation of the DTPA chelator at the N-terminus of the A-chain did not have any impact on the secondary structure of the peptide determined by circular dichroism spectroscopy (CD). On the other hand, it was not possible to determine the secondary structure of Eu-DTPA-(B)-H2 because of its insolubility in phosphate buffer. The B-chain labeled peptide Eu-DTPA-(B)-H2 required solubilization in DMSO prior to carrying out binding assays, and showed lower affinity for binding to H2 relaxin receptor, RXFP1, compared to the water-soluble A-chain labeled peptide Eu-DTPA-(A)-H2. The mono-Eu-DTPA labeled A-chain peptide, Eu-DTPA-(A)-H2, thus can be used as a valuable probe to study ligand-receptor interactions of therapeutically important H2 relaxin analogs. Our results show that it is critical to choose an approriate site for incorporating chelators such as DTPA. Otherwise, the bulky size of the chelator, depending on the site of incorporation, can affect yield, solubility, structure and pharmacological profile of the peptide.  相似文献   

11.
Insulin-like peptide 3 (INSL3) is a peptide hormone belonging to the relaxin-insulin superfamily of peptides that plays important roles in testes descent, oocyte maturation and the control of male germ cell apoptosis. These actions are mediated via a specific G-protein coupled receptor, LGR8. Previous structure-activity studies have shown that the key binding site of INSL3 is situated within its B-chain. Recent studies in our laboratory have led to the identification of a cyclic peptide mimetic 2 of the INSL3 B-chain, which we have shown to compete with the binding of [33P]-relaxin to LGR8 expressed in HEK293T cells, and to inhibit cAMP-mediated signaling in these cells, i.e. it is an antagonist of INSL3. In order to further define the structure-activity relationships of cyclic analogues of the INSL3 B-chain, we used a structure-based approach to design a series of cyclic, disulfide-constrained INSL3 B-chain mimetics. To do this, we first created a model of the 3D structure of INSL3 using the crystal structure of human relaxin as a template. This model of INSL3 was then used as a template to design a series of disulfide-constrained mimetics of the INSL3 B-chain. The peptides were synthesized by solid-phase peptide synthesis using pseudoproline dipeptides to improve the synthesis outcome. Of the seven prepared INSL3 B-chain mimetics, three compounds were found to have partial displacement activity, while four were able to completely displace [33P]-relaxin from LGR8, including compounds that were markedly shorter than compound 2. The best of these, mimetic 6, showed significantly greater affinity for LGR8 than compound 2, but still displayed around 1000-fold less affinity for LGR8 than native INSL3. Analysis of selected mimetics for their alpha-helical content using circular dichroism (CD) spectroscopy revealed that, generally, the mimetics showed less than expected helicity. The inability of the compounds to display true native INSL3 structure is likely contributing to their reduced receptor binding affinity. We are currently examining alternative INSL3 B-chain mimetics that might better present key receptor binding residues in the native INSL3-like conformation.  相似文献   

12.
H2 relaxin is a peptide hormone associated with a number of therapeutically relevant physiological effects, including regulation of collagen metabolism and multiple vascular control pathways. It is currently in phase III clinical trials for the treatment of acute heart failure due to its ability to induce vasodilation and influence renal function. It comprises 53 amino acids and is characterized by two separate polypeptide chains (A-B) that are cross-linked by three disulfide bonds. This size and complex structure represents a considerable challenge for the chemical synthesis of H2 relaxin, a major limiting factor for the exploration of modifications and derivatizations of this peptide, to optimize effect and drug-like characteristics. To address this issue, we describe the solid phase peptide synthesis and structural and functional evaluation of 24 analogues of H2 relaxin with truncations at the termini of its peptide chains. We show that it is possible to significantly truncate both the N and C termini of the B-chain while still retaining potent biological activity. This suggests that these regions are not critical for interactions with the H2 relaxin receptor, RXFP1. In contrast, truncations do reduce the activity of H2 relaxin for the related receptor RXFP2 by improving RXFP1 selectivity. In addition to new mechanistic insights into the function of H2 relaxin, this study identifies a critical active core with 38 amino acids. This minimized core shows similar antifibrotic activity as native H2 relaxin when tested in human BJ3 cells and thus represents an attractive receptor-selective lead for the development of novel relaxin therapeutics.  相似文献   

13.
Relaxin is a pleiotropic hormone which exerts its biological functions through its G-protein coupled receptor, RXFP1. While relaxin is well known for its reproductive and antifibrotic roles, recent studies suggest that it is produced by cancer cells and acts on RXFP1 to induce growth and metastasis. Furthermore, more recently Silvertown et al. demonstrated that lentiviral production of a human gene-2 (H2) relaxin analog reduced the growth of prostate xenograft tumors. The authors proposed that the lentivirally produced peptide was an RXFP1 antagonist; however, the processed form of the peptide produced was not demonstrated. In this study, we have chemically synthesized the H2 relaxin analog, B-R13/17K H2 relaxin, and subjected it to detailed chemical characterization by HPLC, MALDI-TOF mass spectrometry, and amino acid analysis. The biological activity of the synthetic peptide was then tested in three different cell lines. It was found to bind with 500-fold lower affinity than H2 relaxin to RXFP1 receptors over-expressed in HEK-293T cells where it acted as a partial agonist. However, in cells which natively express the RXFP1 receptor, rat renal myofibroblasts and MCF-7 cancer cells, it acted as a full antagonist. Importantly, it was able to significantly inhibit cell invasion induced by H2 relaxin in MCF-7 cells consistent with the results of the lentiviral-driven expression in prostate cancer cells. The relaxin analog, B-R13/17K H2, can now be used as a tool to further understand RXFP1 function, and serve as a template for drug design for a therapeutic to treat prostate and other cancers.  相似文献   

14.
The human relaxin family comprises seven peptide hormones with various biological functions mediated through interactions with G-protein-coupled receptors. Interestingly, among the hitherto characterized receptors there is no absolute selectivity toward their primary ligand. The most striking example of this is the relaxin family ancestor, relaxin-3, which is an agonist for three of the four currently known relaxin receptors: GPCR135, GPCR142, and LGR7. Relaxin-3 and its endogenous receptor GPCR135 are both expressed predominantly in the brain and have been linked to regulation of stress and feeding. However, to fully understand the role of relaxin-3 in neurological signaling, the development of selective GPCR135 agonists and antagonists for in vivo studies is crucial. Recent reports have demonstrated that such selective ligands can be achieved by making chimeric peptides comprising the relaxin-3 B-chain combined with the INSL5 A-chain. To obtain structural insights into the consequences of combining A- and B-chains from different relaxins we have determined the NMR solution structure of a human relaxin-3/INSL5 chimeric peptide. The structure reveals that the INSL5 A-chain adopts a conformation similar to the relaxin-3 A-chain, and thus has the ability to structurally support a native-like conformation of the relaxin-3 B-chain. These findings suggest that the decrease in activity at the LGR7 receptor seen for this peptide is a result of the removal of a secondary LGR7 binding site present in the relaxin-3 A-chain, rather than conformational changes in the primary B-chain receptor binding site.  相似文献   

15.
The development of a biotinylated bombesin/gastrin-releasing peptide (GRP) for use as a receptor probe is reported. The lysine13 of a GRP-27 was substituted by arginine and lysine was added to the amino terminus. Biotinylation of the N-terminal lysine was performed. The biotinylated peptide was purified by HPLC and characterized by mass spectral analysis. Binding studies with murine Swiss 3T3 fibroblasts, cells known to express bombesin/GRP receptors, yielded a dissociation curve for the biotinylated GRP-27 analogue (biotin-Lysyl[Asp12,Arg13]GRP-27) which was nearly identical to that of native GRP. Using studies of gastrin release from isolated canine G cells, equipotent functional activity of the biotinylated probe and unmodified GRP was demonstrated. Measurements of retained 125I-avidin confirmed that the biotin/avidin interaction could occur once the biotin-peptide complex was bound. Applicability of the probe was demonstrated with fluorescent microscopy using avidin-FITC on Swiss 3T3 fibroblasts. In conclusion, a novel biotinylated bombesin/GRP analogue has been developed which retains the functional characteristics of the native peptide and is a useful probe for receptor studies.  相似文献   

16.
Recent structure/function studies on human relaxin II have led to the conclusion that the arginines B13 and/or B17 are important for biological activity. These studies have been confirmed and extended with the help of chemically synthesized derivatives, i.e. dicitrulline (B13, B17), two monocitrulline (B13 and B17), a dilysine (B13, 17), and alanine (B17) relaxins. The CD spectra of synthetic human relaxin and of the derivatives are indistinguishable. Yet, only the native human relaxin II is biologically active and binds strongly to relaxin receptor preparations in vitro. The inactivation is strictly due to side chain functions, in particular the replacement of either or both arginines in the positions B13 or B17. Binding is mediated by a two-prong electrostatic and hydrogen-binding interaction via arginines B13 and B17. Neither B13 nor B17 alone are sufficient and a positive charge equidistant from the B chain helix is equally insufficient. This binding mechanism appears to be unique, as concerns hormone receptor interaction.  相似文献   

17.
Relaxin-3 is the most recently discovered member of the relaxin family of peptide hormones. In contrast to relaxin-1 and -2, whose main functions are associated with pregnancy, relaxin-3 is involved in neuropeptide signaling in the brain. Here, we report the solution structure of human relaxin-3, the first structure of a relaxin family member to be solved by NMR methods. Overall, relaxin-3 adopts an insulin-like fold, but the structure differs crucially from the crystal structure of human relaxin-2 near the B-chain terminus. In particular, the B-chain C terminus folds back, allowing Trp(B27) to interact with the hydrophobic core. This interaction partly blocks the conserved RXXXRXXI motif identified as a determinant for the interaction with the relaxin receptor LGR7 and may account for the lower affinity of relaxin-3 relative to relaxin for this receptor. This structural feature is likely important for the activation of its endogenous receptor, GPCR135.  相似文献   

18.
D Georges  C Schwabe 《FASEB journal》1999,13(10):1269-1275
The fossil record of tunicates reaches back to the upper Cambrian period. Ascidians have mobile, tadpole-like juvenile forms with a notochord, which inspired the classification of tunicates as Urochordata, i.e., predecessors of vertebrates. The genome of the tunicate Ciona intestinalis contains a relaxin coding region that is organized like a mammalian gene, i.e., signal peptide, B-chain domain, connecting peptide domain, followed by the A-chain domain with a stop codon after cysteine A-22. RNA-derived cDNA encodes a relaxin that is identical to the circulating form of the porcine hormone. In contrast to the porcine gene, the ascidian gene has no intron in the C-peptide domain, and in that respect is similar to the bombyxin gene of the silkworm. During the spawning period, only enough relaxin could be extracted and isolated from gonads of C. intestinalis for a partial sequence analysis. Remarkable as it may be, these findings suggest that relaxin is identical in pigs, whales, and the tunicate C. intestinalis.  相似文献   

19.
The synthesis of the hormone relaxin from the speciesGorilla gorilla (gorilla) andMacaca mulatta (rhesus monkey) has been achieved. Each of the two chains which constitute the peptide structures was assembled separately, the A-chains (24 amino acids) by the Boc-polystyrene solid-phase procedure and the B-chains (29 and 28 amino acids) by the Fmoc-polyamide (gorilla) and the Boc-polystyrene (rhesus monkey) solid-phase methods. After cleavage from the solid supports, the separate chains were purified to a high degree of homogeneity. Oxidative combination of the respective A- and B-chains in solution at highpH afforded the synthetic relaxins in low overall yield. Chemical and physiochemical characterization of the products confirmed both their purity and their conformational similarity to the human hormone. The synthetic gorilla and rhesus monkey relaxins were both found to possess potent chronotropic and inotropic activity in the isolated rat cardiac atrium assay.  相似文献   

20.
The 'template-assembled synthetic protein' (TASP) concept provides a simple and elegant approach for the preparation of analogues that retain key structural elements. We have synthesized TASP molecules containing the putative active site of relaxin, a peptide that has similar structural features to insulin but a markedly different biological role. Two types of chemoselective thiol ligation strategies (thioether and thiazolidine) were used and compared. The synthetic pendant peptides contain an essential region for bioactivity that is located in the alpha-helical region of the relaxin B-chain. Depending on whether the thioether or the thiazolidine chemistry was used to attach the peptides to the template, the reacting amino acid was placed either at the C-terminus or N-terminus, respectively, thus allowing the choice of orientation relative to the carrier molecule. The template molecule consists of a decapeptide with two proline-glycine turns and four evenly spaced lysine residues that were functionalized with the appropriate chemical moiety. This allowed reaction with the appropriately derivatized peptides in solution. To improve the template ligation step using the thioether approach, a pendant peptide C-terminal cysteamine residue was used to reduce potential steric hindrance during conjugation. The design of the peptides as well as the synthetic strategy resulted in the acquisition of mimetics showing weak non-competitive and weak competitive antagonist properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号