首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescent cellular biomarkers play a prominent role in biosciences. Most of the available biomarkers have some drawbacks due to either physical and optical or cytotoxic properties. In view of this, we investigated the potential of green fluorescent nanodiamonds as biomarkers in living cells. Nanodiamonds were functionalized by attaching antibodies that target intracellular structures such as actin filaments and mitochondria. Then, the nanodiamond conjugates were transfected into HeLa cells. Transfections were mediated by 4th‐generation dendrimers, cationic liposomes and protamine sulfate. Using fluorescence microscopy, we confirmed successful transfections of the nanodiamonds into HeLa cells. Nanodiamond fluorescence could be easily differentiated from cellular autofluorescence. Furthermore, nanodiamonds could be targeted selectively to intracellular structures. Therefore, nanodiamonds are a promising tool for intracellular assays. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Immature erythroid cells have an exceptionally high capacity to synthesize haem that is, at least in part, the result of the unique control of iron metabolism in these cells. In erythroid cells the vast majority of Fe released from endosomes must cross both the outer and the inner mitochondrial membranes to reach ferrochelatase, which inserts Fe into protoporphyrin IX. Based on the fact that Fe is specifically targeted into erythroid mitochondria, we have proposed that a transient mitochondria-endosome interaction is involved in Fe transfer to ferrochelatase [Ponka (1997) Blood 89, 1-25]. In this study, we examined whether the inhibition of endosome mobility within erythroid cells would decrease the rate of (59)Fe incorporation into haem. We found that, in reticulocytes, the myosin light-chain kinase inhibitor, wortmannin, and the calmodulin antagonist, W-7, caused significant inhibition of (59)Fe incorporation from (59)Fe-transferrin-labelled endosomes into haem. These results, together with confocal microscopy studies using transferrin and mitochondria labelled by distinct fluorescent markers, suggest that, in erythroid cells, endosome mobility, and perhaps their contact with mitochondria, plays an important role in a highly efficient utilization of iron for haem synthesis.  相似文献   

3.
Experimental and clinical studies suggest that gliclazide may protect pancreatic β-cells from apoptosis induced by an oxidative stress. However, the precise mechanism(s) of this action are not fully understood and requires further clarification. Therefore, using human normal and cancer cells we examined whether the anti-apoptotic effects of this sulfonylurea is due to its free radical scavenger properties. Hydrogen peroxide (H2O2) as a model trigger of oxidative stress was used to induce cell death. Our experiments were performed on human normal cell line (human umbilical vein endothelial cell line, HUVEC-c) and human cancer cell lines (human mammary gland cell line, Hs578T; human pancreatic duct epithelioid carcinoma cell line, PANC-1). To assess the effect of gliclazide the cells were pre-treated with the drug. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay was employed to measure the impact of gliclazide on cell viability. Generation of reactive oxygen species, mitochondrial membrane potential (∆Ψm), and intracellular Ca2+ concentration [Ca2+] were monitored. Furthermore, the morphological changes associated with apoptosis were determined using double staining with Hoechst 33258-propidium iodide (PI). Gliclazide protects the tested cells from H2O2-induced cell death most likely throughout the inhibition of ROS production. Moreover, the drug restored loss of ΔΨm and diminished intracellular [Ca2+] evoked by H2O2. Double staining with Hoechst 33258-PI revealed that pre-treatment with gliclazide diminished the number of apoptotic cells. Our findings indicate that gliclazide may protect both normal and cancer human cells against apoptosis induced by H2O2. It appears that the anti-apoptotic effect of the drug is most likely associated with reduction of oxidative stress.  相似文献   

4.
The synthesis and turnover of hexokinase has been measured in Zajdela hepatoma ascites cells labeled for short periods with [35S]methionine. Digitonin fractionation of the labeled cells into a soluble and a membrane fraction showed that only a small part of the newly labeled hexokinase is transferred to mitochondrial binding sites. The soluble enzyme disappears, however, with a half-life of less than 2 h. Glucose had no effect on the stability of the soluble enzyme in intact cells. Our experiments suggest that Zajdela cell hexokinase is synthesized in excess of binding sites and that the excess enzyme is not stable.  相似文献   

5.
Ehrlich ascites tumour cells were treated with digitonin so that they became permeable for low-molecular-weight compounds but, at certain concentrations of digitonin, retained most of their cytoplasmic proteins. Respiration of mitochondria with exogenous substrates and their membrane potential could thus be measured in situ by means of oxygen electrode and tetraphenylphosphonium-sensitive electrode, respectively. The results were compared with data from similar measurements on mitochondria isolated from such digitonin-permeabilized cells. Isolated mitochondria and mitochondria in situ oxidized succinate at similar rates and developed membrane potential of comparable magnitude. Both preparations also exhibited an identical nonlinear relationship between resting state respiration (titrated with a respiratory inhibitor) and the membrane potential. In the cells permeabilized with low concentrations of digitonin (i.e., retaining most of cytoplasmic proteins) and suspended in medium containing NaCl and other major anions and cations at concentrations close to those in mammalian plasma, anaerobiosis did not produce a decrease in the mitochondrial membrane potential, which was collapsed only after a subsequent addition of oligomycin. In this medium, glucose had little effect on either respiration or the membrane potential.  相似文献   

6.
Protein targeting to specified cellular compartments is essential to maintain cell function and homeostasis. In eukaryotic cells, two major pathways rely on N‐terminal signal peptides to target proteins to either the endoplasmic reticulum (ER) or mitochondria. In this study, we show that the ER signal peptides of the prion protein‐like protein shadoo, the neuropeptide hormone somatostatin and the amyloid precursor protein have the property to mediate alternative targeting to mitochondria. Remarkably, the targeting direction of these signal peptides is determined by structural elements within the nascent chain. Each of the identified signal peptides promotes efficient ER import of nascent chains containing α‐helical domains, but targets unstructured polypeptides to mitochondria. Moreover, we observed that mitochondrial targeting by the ER signal peptides correlates inversely with ER import efficiency. When ER import is compromised, targeting to mitochondria is enhanced, whereas improving ER import efficiency decreases mitochondrial targeting. In conclusion, our study reveals a novel mechanism of dual targeting to either the ER or mitochondria that is mediated by structural features within the nascent chain.  相似文献   

7.
Selective in vitro antioxidant properties of bisphosphonates   总被引:4,自引:0,他引:4  
The aim of this study was to investigate the in vitro antioxidant profile of different bisphosphonates. Bisphosphonates were tested for their xanthine oxidase and microsomal lipid peroxidation inhibiting capacity. Furthermore, the effect of these different compounds on DPPH, a stable radical, was investigated. Clodronate, risedronate, and pyrophosphate were further tested for their hydroxyl radical scavenging activity. None of the tested compounds showed xanthine oxidase inhibiting activity or DPPH scavenging activity. All the tested bisphosphonates exhibited inhibiting capacities on the microsomal lipid peroxidation. The hydroxyl radical scavenging activity was dependent on the order of adding the different reagents and was highest for risedronate. Bisphosphonates possess an inhibiting activity on the microsomal lipid peroxidation and the Fenton reaction. In these reactions iron plays an important role suggesting that the selective in vitro antioxidant properties of the bisphosphonates are due to their iron chelating characteristics.  相似文献   

8.
Ubiquinone-binding proteins were isolated and purified from heavy beef heart mitochondria. 35% of the total ubiquinone in the mitochondria was associated with the purified proteins. About 83% of the associated ubiquinone could be released from the proteins by proteolytic treatment showing that at least 29% (0.87 nmol/mg) of the total ubiquinone (3.0 nmol ubiquinone/mg) in the mitochondria is in the bound form. The purified ubiquinone-binding proteins were resolved into 5 polypeptides with the molecular weights of 17.4, 12.9, 12.6, 9.8 and 8.6 kD on sodium dodecyl sulfate-gel electrophoresis.  相似文献   

9.
Plant cells contain two organelles originally derived from endosymbiotic bacteria: mitochondria and plastids. Their endosymbiotic origin explains why these organelles contain their own DNA, nonetheless only a few dozens of genes are actually encoded by these genomes. Many of the other genes originally present have been transferred to the nuclear genome of the host, the product of their expression being targeted back to the corresponding organelle. Although targeting of proteins to mitochondria and chloroplasts is generally highly specific, an increasing number of examples have been discovered where the same protein is imported into both organelles. The object of this review is to compare and discuss these examples in order to try and identify common features of dual-targeted proteins. The study helps throw some light on the factors determining organelle targeting specificity, and suggests that dual-targeted proteins may well be far more common than once thought.  相似文献   

10.
A number of genetic or drug-induced pathophysiological disorders, particularly neurodegenerative diseases, have been reported to correlate with catalytic impairments of NADH:ubiquinone oxidoreductase (mitochondrial complex I). The vast majority of the data on catalytic properties of this energy-transducing enzyme have been accumulated from studies on bovine heart complex I preparations of different degrees of resolution, whereas almost nothing is known about the functional activities of the enzyme in neuronal tissues. Here a procedure for preparation of coupled inside-out submitochondrial particles from brain is described and their NADH oxidase activity is characterized. The basic characteristics of brain complex I, particularly the parameters of A/D-transition are found to be essentially the same as those previously reported for heart enzyme. The results show that coupled submitochondrial particles prepared from either heart or brain can equally be used as a model system for in vitro studies aimed to delineate neurodegenerative-associated defects of complex I.  相似文献   

11.
The endoplasmic reticulum-associated degradation (ERAD) is a cellular quality control mechanism to dispose of misfolded proteins of the secretory pathway via proteasomal degradation. SEL1L is an ER-resident protein that participates in identification of misfolded molecules as ERAD substrates, therefore inducing their ER-to-cytosol retrotranslocation and degradation. We have developed a novel class of fusion proteins, termed degradins, composed of a fragment of SEL1L fused to a target-specific binding moiety located on the luminal side of the ER. The target-binding moiety can be a ligand of the target or derived from specific mAbs. Here, we describe the ability of degradins with two different recognition moieties to promote degradation of a model target. Degradins recognize the target protein within the ER both in secretory and membrane-bound forms, inducing their degradation following retrotranslocation to the cytosol. Thus, degradins represent an effective technique to knock-out proteins within the secretory pathway with high specificity.  相似文献   

12.
13.
Oxidative stress caused by excess reactive oxygen species (ROS) accelerates telomere erosion and mitochondrial injury, leading to impaired cellular functions and cell death. Whether oxidative stress‐mediated telomere erosion induces mitochondrial injury, or vice versa, in human T cells—the major effectors of host adaptive immunity against infection and malignancy—is poorly understood due to the pleiotropic effects of ROS. Here we employed a novel chemoptogenetic tool that selectively produces a single oxygen (1O2) only at telomeres or mitochondria in Jurkat T cells. We found that targeted 1O2 production at telomeres triggered not only telomeric DNA damage but also mitochondrial dysfunction, resulting in T cell apoptotic death. Conversely, targeted 1O2 formation at mitochondria induced not only mitochondrial injury but also telomeric DNA damage, leading to cellular crisis and apoptosis. Targeted oxidative stress at either telomeres or mitochondria increased ROS production, whereas blocking ROS formation during oxidative stress reversed the telomeric injury, mitochondrial dysfunction, and cellular apoptosis. Notably, the X‐ray repair cross‐complementing protein 1 (XRCC1) in the base excision repair (BER) pathway and multiple mitochondrial proteins in other cellular pathways were dysregulated by the targeted oxidative stress. By confining singlet 1O2 formation to a single organelle, this study suggests that oxidative stress induces dual injury in T cells via crosstalk between telomeres and mitochondria. Further identification of these oxidation pathways may offer a novel approach to preserve mitochondrial functions, protect telomere integrity, and maintain T cell survival, which can be exploited to combat various immune aging‐associated diseases.  相似文献   

14.
Hydrogen sulfide (H(2)S) is an endogenously produced gaseous signaling molecule with diverse physiological activity. The potential protective effects of H(2)S have not been evaluated in the liver. The purpose of the current study was to investigate if H(2)S could afford hepatoprotection in a murine model of hepatic ischemia-reperfusion (I/R) injury. Hepatic injury was achieved by subjecting mice to 60 min of ischemia followed by 5 h of reperfusion. H(2)S donor (IK1001) or vehicle were administered 5 min before reperfusion. H(2)S attenuated the elevation in serum alanine aminotransferase (ALT) by 68.6% and aspartate aminotransferase (AST) by 70.8% compared with vehicle group. H(2)S-mediated cytoprotection was associated with an improved balance between reduced glutathione (GSH) vs. oxidized glutathione (GSSG), an attenuated formation of lipid hydroperoxides, and an increased expression of thioredoxin-1 (Trx-1). Furthermore, H(2)S inhibited the progression of apoptosis after I/R injury by increasing the protein expression of heat shock protein (HSP-90) and Bcl-2. These results indicate that H(2)S protects the murine liver against I/R injury through an upregulation of intracellular antioxidant and antiapoptotic signaling pathways.  相似文献   

15.
The functions of mitochondria and chloroplasts rely on thousands of proteins, mostly imported from the cytosol through specialized import channels. Neither the detailed import mechanisms nor the identities of all targeted proteins are known. Recent surprises include unexpected results concerning import receptors, unexpectedly frequent dual-targeting of proteins, and the discovery of novel routes of protein trafficking. Such findings make it more difficult to predict which proteins really are targeted to organelles. By combining experimental and bioinformatics data, we estimate the size of the mitochondrial and plastid proteomes to be approximately 2000 and 2700 proteins, respectively. Advances in cell and organelle fractionation coupled with modern proteomics techniques are probably the best route to understanding organellar protein composition.  相似文献   

16.
T Minko  A Stefanov  V Pozharov 《Journal of applied physiology》2002,93(4):1550-60; discussion 1549
The aim of this study is to examine the antioxidant and antiapoptotic activity of liposomal alpha-tocopherol (LAT) in anesthetized rats exposed to severe hypoxia. It was shown that intratracheal application of LAT normalized lung phospholipid composition and inhibited lipid peroxidation in lung tissues, which in turn decreased lung edema and damage and improved breathing pattern, oxygen diffusion, and lung gas exchange. LAT also limited the overexpression of genes encoding hypoxia inducible factor-1alpha and both studied forms of phospholipase A(2), and it increased the power of cellular antioxidant and antiapoptotic defense by overexpressing genes encoding Mn- and Cu-Zn-cofactored superoxide dismutases, Bcl-2, and heat shock 70 proteins. The overexpression of studied caspases and their activity were downregulated, which significantly (1.6-2 times) limited apoptosis in lung cells. Finally, all these positive changes decreased mortality during hypoxia from approximately 60% in untreated animals to approximately 30% in the group of rats treated with LAT. The data obtained indicate that LAT may be useful for the correction of hypoxic lung injury.  相似文献   

17.
Relative specific amino acid dependency is one of the metabolic abnormalities of cancer cells, and restriction of specific amino acids induces apoptosis of prostate cancer cells. This study shows that restriction of tyrosine and phenylalanine (Tyr/Phe), glutamine (Gln), or methionine (Met), modulates Raf and Akt survival pathways and affects the function of mitochondria in DU145 and PC3, in vitro. These three restrictions inhibit energy production (ATP synthesis) and induce generation of reactive oxygen species (ROS). Restriction of Tyr/Phe or Met in DU145 and Met in PC3 reduces mitochondrial membrane potential (DeltaPsim) and induces caspase-dependent and -independent apoptosis. In DU145, Tyr/Phe or Met restriction reduces activity of Akt, mitochondrial distribution of phosphorylated Raf and apoptosis inducing factor (AIF), and increases mitochondrial distribution of Bak. Mitochondrial Bcl-XL is increased in Tyr/Phe-restricted but decreased in Met-restricted cells. Under Tyr/Phe or Met restriction, reduced mitochondrial Raf does not inactivate the pro-apoptotic function of Bak. Tyr/Phe restriction also inhibits Bcl-2 and Met restriction inhibits Bcl-XL in mitochondria. These comprehensive actions damage the integrity of the mitochondria and induce apoptosis of DU145. In PC3, apoptosis induced by Met restriction was not associated with alterations in intracellular distribution of Raf, Bcl-2 family proteins, or AIF. All of the amino acid restrictions inhibited Akt activity in this cell line. We conclude that specific amino acid restriction differentially interferes with homeostasis/balance between the Raf and Akt survival pathways and with the interaction of Raf and Bcl-2 family proteins in mitochondria to induce apoptosis of DU145 and PC3 cells.  相似文献   

18.
Eukaryotic cell viability is largely regulated at the level of mitochondria, with cell death executed by endogenous proteins that act to increase the permeability of the inner and/or outer membranes of these organelles. The gastric pathogen, Helicobacter pylori, can mimic this mechanism by producing the pro-apoptotic toxin, VacA, which was recently demonstrated to (i) localize to mitochondria within epithelial cells, (ii) rapidly transport into mitochondria in vitro, and (iii) induce changes consistent with permeabilization of mitochondrial membranes by a mechanism dependent on cellular entry and toxin membrane channel activity. The targeting of mitochondrial membranes is emerging as a strategy used by pathogenic microbes to control cell viability while circumventing upstream pathways and checkpoints of cell death.  相似文献   

19.
Ceramide is a key lipid mediator of cellular processes such as differentiation, proliferation, growth arrest and apoptosis. During apoptosis, ceramide is produced within the plasma membrane. Although recent data suggest that the generation of intracellular ceramide increases mitochondrial permeability, the source of mitochondrial ceramide remains unknown. Here, we determine whether a stress-mediated plasmalemmal pool of ceramide might become available to the mitochondria of apoptotic cells. We have previously established annexin A1--a member of a family of Ca(2+) and membrane-binding proteins--to be a marker of ceramide platforms. Using fluorescently tagged annexin A1, we show that, upon its generation within the plasma membrane, ceramide self-associates into platforms that subsequently invaginate and fuse with mitochondria. An accumulation of ceramide within the mitochondria of apoptotic cells was also confirmed using a ceramide-specific antibody. Electron microscopic tomography confirmed that upon the formation of ceramide platforms, the invaginated regions of the plasma membrane extend deep into the cytoplasm forming direct physical contacts with mitochondrial outer membranes. Ceramide might thus be directly transferred from the plasma membrane to the mitochondrial outer membrane. It is conceivable that this "kiss-of-death" increases the permeability of the mitochondrial outer membrane thereby triggering apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号