共查询到20条相似文献,搜索用时 6 毫秒
1.
2.
McCool F. D.; Tzelepis G. E.; Leith D. E.; Hoppin F. G. Jr 《Journal of applied physiology》1989,66(5):2045-2055
When a subject breathes against an inspiratory resistance, the inspiratory pressure, the inspiratory flow, and the lung volume at which the breathing task takes place all interact to determine the length of time the task can be sustained (Tlim). We hypothesized that the mechanism actually limiting tasks in which these parameters were varied involved the rate of energy utilization by the inspiratory muscles. To test this hypothesis, we studied four experienced normal subjects during fatiguing breathing tasks performed over a range of pressures and flows and at two different lung volumes. We assessed energy utilization by measuring the increment in the rate of whole body O2 consumption due to the breathing task (VO2 resp). Power and mean esophageal pressure correlated with Tlim but depended also on lung volume and inspiratory flow rate. In contrast, VO2 resp closely correlated with Tlim, and this relationship was not systematically altered by inspiratory flow or lung volume. The shape of the VO2 resp vs. Tlim curve was approximately hyperbolic, with high rates of VO2 resp associated with short endurance times and lower rates of VO2 resp approaching an asymptotic value at high Tlim. These findings are consistent with a mechanism whereby a critical rate of energy utilization determines the endurance of the inspiratory pump, and that rate varies with pressure, flow, and lung volume. 相似文献
3.
4.
5.
Cibella F.; Cuttitta G.; Romano S.; Grassino A.; Bellia V. 《Journal of applied physiology》1994,76(6):2394-2404
6.
7.
Zadoff A. D.; Kobayashi T.; Brigham K. L.; Newman J. H. 《Journal of applied physiology》1986,60(4):1380-1385
Diethylcarbamazine (DEC) is an inhibitor of lipoxygenase, with protective effects in several experimental models of anaphylaxis and lung dysfunction. The hypothesis of this study was that DEC would alter the pulmonary response to endotoxin infusion, especially the prolonged pulmonary hypertension, leukopenia, hypoxemia, and high flow of protein-rich lung lymph. We prepared sheep for chronic measurements of hemodynamics and collection of lung lymph. In paired studies we gave six sheep endotoxin (0.5 micrograms/kg iv) either with or without DEC. DEC was given (80-100 mg/kg iv) over 30 min followed by a continuous infusion at 1 mg X kg-1 X min-1. Endotoxin was given after the loading infusion of DEC, and variables were monitored for 4 h. The response to endotoxin was characterized by pulmonary hypertension, leukopenia, hypoxemia, and elevations of thromboxane B2 and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha). Lymph flow and protein content reflected hemodynamic and permeability changes in the pulmonary circulation. DEC did not significantly modify the response to endotoxin by any measured variable, including pulmonary arterial and left atrial pressures, cardiac output, lymph flow and protein content, alveolar-to-arterial PO2 difference, blood leukocyte count, and lymph thromboxane B2 and 6-keto-PGF1 alpha. We could not find evidence of release of leukotriene C4/D4 by radioimmunoassay in lung lymph after endotoxin infusion with or without DEC treatment. We conclude that lipoxygenase products of arachidonic acid may not be a major component of the pulmonary vascular response to endotoxin. 相似文献
8.
We determined the effects of infusion of prostacyclin (PGI2) and 6-alpha-carba-PGI2 (6-cPGI2), a stable PGI2 analogue, on pulmonary transvascular fluid and protein fluxes after intravascular coagulation induced by thrombin. Studies were made in control awake sheep prepared with lung lymph fistulas (n = 6) and in similarly prepared awake sheep pretreated with either 6-cPGI2 (n = 5) or PGI2 (n = 5). Both prostacyclin compounds (500 ng X kg-1 X min-1) were infused intravenously. All groups were challenged with 80 U/kg thrombin. Pulmonary arterial pressure (Ppa), pulmonary vascular resistance (PVR), pulmonary lymph flow (Qlym), lymph protein clearance (Qlym X lymph/plasma protein concentration ratio), and neutrophil and platelet counts were determined. In vitro tests assessed sheep neutrophil chemotaxis and chemiluminescence and platelet aggregation. In both 6-cPGI2 and PGI2 groups, the increases in Qlym after thrombin were less than those in the control group. The increase in lymph protein clearance in the 6-cPGI2 group was the same as that in control, whereas the increase in clearance in the PGI2 group was reduced. PVR and Ppa increased to a greater extent in the 6-cPGI2 group than in the control group, whereas the increases in PVR and Ppa were inhibited in the PGI2 group. Neutrophil and platelet counts decreased after thrombin in PGI2 and 6-cPGI2 groups, as they did in the control group. Neither 6-cPGI2 altered neutrophil chemotaxis induced by thrombin and chemiluminescence induced by opsonized zymosan. Both prostacyclin compounds inhibited platelet aggregation induced by ADP or thrombin.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
9.
10.
Ventilatory afterdischarge in the awake goat. 总被引:1,自引:0,他引:1
M J Engwall L Daristotle W Z Niu J A Dempsey G E Bisgard 《Journal of applied physiology》1991,71(4):1511-1517
Ventilatory afterdischarge (VAD) has been defined as a persistent gradually diminishing elevation of ventilatory activity that occurs after withdrawal of a variety of respiratory stimuli. The phenomenon has been well documented in the anesthetized cat, piglet, and lamb in response to electrical stimulation of the carotid sinus nerve. We sought to determine whether VAD could be demonstrated in the standing awake goat (n = 7) by use of an extracorporeal circuit to provide square-wave physiological stimulation of the carotid chemoreceptor (carotid body PO2 40 Torr). After 5 min of isolated carotid body stimulation, the mean time constants for diminishing inspired minute ventilation, tidal volume, and respiratory frequency were 27.7, 34.5, and 25.5 s, respectively. These results indicate that VAD does exist in the awake goat model. A critical factor for the demonstration of VAD is the maintenance of systemic arterial PCO2 (isocapnia) during the period of increased ventilatory activity. If arterial PCO2 is allowed to decrease even slightly during the hyperventilation, the magnitude and duration of VAD are greatly attenuated. 相似文献
11.
12.
Tolerance to low-dose endotoxin in awake sheep 总被引:1,自引:0,他引:1
Whyte R. I.; Warren H. S.; Greene E.; Glennon M. L.; Robinson D. R.; Zapol W. M. 《Journal of applied physiology》1989,66(6):2546-2552
Dose response and tolerance to a small intravenous dose of Serratia marcescens lipopolysaccharide (LPS) were studied in awake sheep. Core temperature significantly increased after a dose of 0.002 micrograms/kg; changes in pulmonary arterial pressure, pulmonary vascular resistance, plasma thromboxane B2, and circulating leukocyte concentration occurred after 0.02 micrograms/kg; plasma 6-keto-prostaglandin F1 alpha increased after 0.2 micrograms/kg. Development of acute tolerance was studied by injection of S. marcescens LPS (0.02 micrograms/kg iv) on 3 consecutive days: pulmonary arterial pressure and thromboxane B2 levels were significantly lower than controls after the second dose, whereas fever and the degree of leukopenia were not diminished until the third dose. After intravenous administration of LPS given in increasing doses from 0.1 to 3.2 micrograms/kg three times weekly over 7 wk, there were no measurable changes in any of the above parameters after challenge with S. marcescens LPS (0.02 micrograms/kg) after a 1-wk rest period. In awake sheep, small intravenous doses of LPS can cause physiologically important changes of the pulmonary circulation and can alter the hemodynamic and eicosanoid mediator responses to subsequent challenges with LPS. Large intravenous doses of LPS can ablate the physiological responses to subsequent small doses of LPS. 相似文献
13.
Ventilatory responses to chemoreceptor stimulation after hypoxic acclimatization in awake goats 总被引:4,自引:0,他引:4
Our objective was to test the hypothesis that exposure to prolonged hypoxia results in altered responsiveness to chemoreceptor stimulation. Acclimatization to hypoxia occurs rapidly in the awake goat relative to other species. We tested the sensitivity of the central and peripheral chemoreceptors to chemical stimuli before and after 4 h of either isocapnic or poikilocapnic hypoxia (arterial PO2 40 Torr). We confirmed that arterial PCO2 decreased progressively, reaching a stable value after 4 h of hypoxic exposure (poikilocapnic group). In the isocapnic group, inspired minute ventilation increased over the same time course. Thus, acclimatization occurred in both groups. In goats, isocapnic hypoxia did not result in hyperventilation on return to normoxia, whereas poikilocapnic hypoxia did cause hyperventilation, indicating a different mechanism for acclimatization and the persistent hyperventilation on return to normoxia. Goats exposed to isocapnic hypoxia exhibited an increased slope of the CO2 response curve. Goats exposed to poikilocapnic hypoxia had no increase in slope but did exhibit a parallel leftward shift of the CO2 response curve. Neither group exhibited a significant change in response to bolus NaCN injections or dopamine infusions after prolonged hypoxia. However, both groups demonstrated a similar significant increase in the ventilatory response to subsequent acute exposure to isocapnic hypoxia. The increase in hypoxic ventilatory sensitivity, which was not dependent on the modality of hypoxic exposure (isocapnic vs. poikilocapnic), reinforces the key role of the carotid chemoreceptors in ventilatory acclimatization to hypoxia. 相似文献
14.
The effect of decreased lung volume on ventilatory responses to arteriovenous fistula-induced increased cardiac output was studied in four chronic awake dogs. Lung volume decreases were imposed by application of continuous negative-pressure breathing of -10 cmH2O to the trachea. The animals were surgically prepared with chronic tracheostomy, indwelling carotid artery catheter, and bilateral arteriovenous femoral shunts. Control arteriovenous blood flow was 0.5 l/min, and test flow level was 2.0 l/min. Arterial blood CO2 tension (PaCO2) was continuously monitored using an indwelling Teflon membrane mass spectrometer catheter, and inhaled CO2 was given to maintain isocapnia throughout. Increased fistula flow alone led to a mean 52% increase in cardiac output (CO), whereas mean systemic arterial blood pressure (Psa) fell 4% (P less than 0.01). Negative-pressure breathing alone raised Psa by 3% (P less than 0.005) without a significant change in CO. Expired minute ventilation (VE) increased by 27% (P less than 0.005) from control in both of these conditions separately. Combined increased flow and negative pressure led to a 50% increase in CO and 56% increase in VE (P less than 0.0025) without any significant change in Psa. Effects of decreased lung volume and increased CO appeared to be additive with respect to ventilation and to occur under conditions of constant PaCO2 and Psa. Because both decreased lung volume and increased CO occur during normal exercise, these results suggest that mechanisms other than chemical regulation may play an important role in the control of breathing and contribute new insights into the isocapnic exercise hyperpnea phenomenon. 相似文献
15.
16.
Ventilatory responses to hypoxia and hypercapnia were measured by indirect plethysmography in unanesthetized unrestrained adult rats injected neonatally with capsaicin (50 mg/kg) or vehicle. Such capsaicin treatment ablates a subpopulation of primary afferent fibers containing substance P and various other neuropeptides. Ventilation was measured while the rats breathed air, 12% O2 in N2, 8% O2 in N2, 5% CO2 in O2, or 8% CO2 in O2. Neonatal treatment with capsaicin caused marked alterations in both the magnitude and composition of the hypoxic but not hypercapnic ventilatory response. The increase in minute ventilation evoked by hypoxia in the vehicle-treated rats resulted entirely from an increase in respiratory frequency. In the capsaicin-treated rats the hypoxic ventilatory response was significantly reduced owing to an attenuation of the frequency response. Although both groups responded to hypoxia with a shortening in inspiratory and expiratory times, rats treated with capsaicin displayed less shortening of both respiratory phases. By contrast, hypercapnia induced a brisk ventilatory response in the capsaicin-treated group that was similar in magnitude and pattern to that observed in the vehicle-treated group. Analysis of the components of the hypercapnic ventilatory responses revealed no significant differences between the two groups. We, therefore, conclude that neuropeptide-containing C-fibers are essential for the tachypnic component of the ventilatory response to hypoxia but not hypercapnia. 相似文献
17.
D Maillard C Delpuech C Hatzfeld 《European journal of applied physiology and occupational physiology》1990,60(2):120-126
Effect of He-O2-breathing (79.1%:20.9%) compared to air-breathing on inspiratory ventilation (VI) and its different components [tidal volume (VT), the duration of the phases of each respiratory cycle (tI, tTOT)] as well as on inspiratory mouth occlusion pressure (P0.1) were studied in six normal men at rest and during 72 constant-load exercises (90 W) over a much longer period than in previous studies. Results showed that, irrespective of the order of administration of the two gases (7 min air----7 min He-O2 or vice versa): at rest, P0.1 decreased during He-O2 inhalation but no changes in VI and breathing pattern were detectable; during exercise, sustained He-induced hyperventilation was observed without any change in the absolute value of P0.1; increase in P0.1 between the resting period and exercise (delta P0.1) was significantly higher during He-O2-breathing than during air breathing; this He-induced hyperventilation was associated with a sustained increase in VT/tI, but with constant tI/tTOT. Helium-breathing during exercise cannot be a simple situation of resistance unloading, as has been suggested. We conclude that He-O2-breathing, after the initial compensation period, induces reflex changes in ventilatory control with an increase in inspiratory neural drive. Moreover, it appears that exercise P0.1 is not a legitimate index of inspiratory neural drive whenever rest P0.1 changes according to the nature of the inhaled gas mixture. 相似文献
18.
Ventilatory response to isocapnic hyperoxia 总被引:2,自引:0,他引:2
Becker H.; Polo O.; McNamara S. G.; Berthon-Jones M.; Sullivan C. E. 《Journal of applied physiology》1995,78(2):696-701
19.
Snapper J. R.; Lefferts P. L.; Stecenko A. A.; Hinson J. M. Jr; Dyer E. L. 《Journal of applied physiology》1986,61(2):752-759
The experiments were designed to further characterize pulmonary responsiveness to nonantigenic aerosol bronchoconstrictors in unanesthetized sheep. The distribution of aerosol histamine responsiveness was described among 55 sheep. Within day reproducibility of aerosol histamine (n = 18) and carbachol (n = 8) responsiveness was studied and aerosol histamine and carbachol responsiveness were compared (n = 9). The effects of cyclooxygenase inhibition with meclofenamate (n = 7) and ibuprofen (n = 8) on pulmonary responsiveness to aerosol histamine was studied as was the effect of ibuprofen (n = 6) on pulmonary responsiveness to aerosol carbachol. A log normal unimodal distribution of pulmonary responsiveness to aerosol histamine was described. Within day pulmonary responsiveness to aerosol histamine was highly reproducible while pulmonary responsiveness to aerosol carbachol decreased slightly, but not significantly, on the second challenge. Pulmonary responsiveness to aerosol histamine correlated with pulmonary responsiveness to aerosol carbachol (r = 0.85, P less than 0.05). Meclofenamate did not significantly attenuate pulmonary responsiveness to aerosol histamine. Ibuprofen attenuated pulmonary responsiveness to aerosol histamine (P less than 0.05) but not to aerosol carbachol. These experiments supply basic information related to pulmonary responsiveness to nonantigenic bronchoconstrictors in awake sheep. 相似文献
20.
Ventilatory response to drug-induced hypermetabolism 总被引:1,自引:0,他引:1