首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific interactions between proteins and ligands that modify their functions are crucial in biology. Here, we examine sugars that bind the lactose repressor protein (LacI) and modify repressor affinity for operator DNA using isothermal titration calorimetry and equilibrium DNA binding experiments. High affinity binding of the commonly-used inducer isopropyl-beta,D-thiogalactoside is strongly driven by enthalpic forces, whereas inducer 2-phenylethyl-beta,D-galactoside has weaker affinity with low enthalpic contributions. Perturbing the dimer interface with either pH or oligomeric state shows that weak inducer binding is sensitive to changes in this distant region. Effects of the neutral compound o-nitrophenyl-beta,D-galactoside are sensitive to oligomerization, and at elevated pH this compound converts to an anti-inducer ligand with slightly enhanced enthalpic contributions to the binding energy. Anti-inducer o-nitrophenyl-beta,D-fucoside exhibits slightly enhanced affinity and increased enthalpic contributions at elevated pH. Collectively, these results both demonstrate the range of energetic consequences that occur with LacI binding to structurally-similar ligands and expand our insight into the link between effector binding and structural changes at the subunit interface.  相似文献   

2.
An extensive and self-consistent set of thermodynamic properties has recently been established for the coupled processes of subunit assembly and ligand binding (oxygen and protons) in human hemoglobin. The resulting thermodynamic values permit a consideration of the possible sources of energetic terms accounting for stability of the tetrameric quaternary structures at different stages of ligation, and of the possible sources of cooperative energy. The analysis indicates that: (a) The change in buried surface ara upon oxygenation (i.e., hydrophobic stabilization) does not play a dominant role in stabilizing the unliganded tetramer relative to the liganded tetramer. (b) The pattern of enthalpic and entropic contributions to the free energies of dimer-tetramer. (c) The thermodynamic results are consistent with a dominant role of increased hydrogen bond formation in the deoxy quaternary structure. (d) Within tetramers the variation in free energy for successive oxygenation steps arises from both enthalpic and entropic contributions and the enthalpic contributions are almost entirely attributable to the heats of Bohr proton release. At pH 7.4 the pattern of thermodynamic values suggests that a large contribution to the free energy of cooperativity may arise from the energetics of Bohr proton release. It is suggested that a combination of proton ionization and hydrogen bonding may account for the main energetic features of cooperativity. Possible contributions from fluctuation behavior cannot presently be evaluated.  相似文献   

3.
The inhibition of the interactions between SH3 domains and their targets is emerging as a promising therapeutic strategy. To date, rational design of potent ligands for these domains has been hindered by the lack of understanding of the origins of the binding energy. We present here a complete thermodynamic analysis of the binding energetics of the p41 proline-rich decapeptide (APSYSPPPPP) to the SH3 domain of the c-Abl oncogene. Isothermal titration calorimetry experiments have revealed a thermodynamic signature for this interaction (very favourable enthalpic contributions opposed by an unfavourable binding entropy) inconsistent with the highly hydrophobic nature of the p41 ligand and the Abl-SH3 binding site. Our structural and thermodynamic analyses have led us to the conclusion, having once ruled out any possible ionization events or conformational changes coupled to the association, that the establishment of a complex hydrogen-bond network mediated by water molecules buried at the binding interface is responsible for the observed thermodynamic behaviour. The origin of the binding energetics for proline-rich ligands to the Abl-SH3 domain is further investigated by a comparative calorimetric analysis of a set of p41-related ligands. The striking effects upon the enthalpic and entropic contributions provoked by conservative substitutions at solvent-exposed positions in the ligand confirm the complexity of the interaction. The implications of these results for rational ligand design are discussed.  相似文献   

4.
5.
Nidhi Singh  Arieh Warshel 《Proteins》2010,78(7):1724-1735
One of the most important requirements in computer‐aided drug design is the ability to reliably evaluate the binding free energies. However, the process of ligand binding is very complex because of the intricacy of the interrelated processes that are difficult to predict and quantify. In fact, the deeper understanding of the origin of the observed binding free energies requires the ability to decompose these free energies to their contributions from different interactions. Furthermore, it is important to evaluate the relative entropic and enthalpic contributions to the overall free energy. Such an evaluation is useful for assessing temperature effects and exploring specialized options in enzyme design. Unfortunately, calculations of binding entropies have been much more challenging than calculations of binding free energies. This work is probably the first to present microscopic evaluation of all of the relevant components to the binding entropy, namely configurational, polar solvation, and hydrophobic entropies. All of these contributions are evaluated by the restraint release approach. The calculated results shed an interesting light on major compensation effects in both the solvation and hydrophobic effect and, despite some overestimate, can provide very useful insight. This study also helps in analyzing some problems with the widely used molecular mechanics/Poisson‐Boltzmann surface area approach. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Additivity of functional group contributions to protein-ligand binding is a very popular concept in medicinal chemistry as the basis of rational design and optimized lead structures. Most of the currently applied scoring functions for docking build on such additivity models. Even though the limitation of this concept is well known, case studies examining in detail why additivity fails at the molecular level are still very scarce. The present study shows, by use of crystal structure analysis and isothermal titration calorimetry for a congeneric series of thrombin inhibitors, that extensive cooperative effects between hydrophobic contacts and hydrogen bond formation are intimately coupled via dynamic properties of the formed complexes. The formation of optimal lipophilic contacts with the surface of the thrombin S3 pocket and the full desolvation of this pocket can conflict with the formation of an optimal hydrogen bond between ligand and protein. The mutual contributions of the competing interactions depend on the size of the ligand hydrophobic substituent and influence the residual mobility of ligand portions at the binding site. Analysis of the individual crystal structures and factorizing the free energy into enthalpy and entropy demonstrates that binding affinity of the ligands results from a mixture of enthalpic contributions from hydrogen bonding and hydrophobic contacts, and entropic considerations involving an increasing loss of residual mobility of the bound ligands. This complex picture of mutually competing and partially compensating enthalpic and entropic effects determines the non-additivity of free energy contributions to ligand binding at the molecular level.  相似文献   

7.
The conformation adopted by a ligand on binding to a receptor may differ from its lowest-energy conformation in solution. In addition, the bound ligand is more conformationally restricted, which is associated with a configurational entropy loss. The free energy change due to these effects is often neglected or treated crudely in current models for predicting binding affinity. We present a method for estimating this contribution, based on perturbation theory using the quasi-harmonic model of Karplus and Kushick as a reference system. The consistency of the method is checked for small model systems. Subsequently we use the method, along with an estimate for the enthalpic contribution due to ligand-receptor interactions, to calculate relative binding affinities. The AMBER force field and generalized Born implicit solvent model is used. Binding affinities were estimated for a test set of 233 protein-ligand complexes for which crystal structures and measured binding affinities are available. In most cases, the ligand conformation in the bound state was significantly different from the most favorable conformation in solution. In general, the correlation between measured and calculated ligand binding affinities including the free energy change due to ligand conformational change is comparable to or slightly better than that obtained by using an empirically-trained docking score. Both entropic and enthalpic contributions to this free energy change are significant.  相似文献   

8.
The peptides Asp-Ala-His-Lys (DAHK) and Gly-His-Lys (GHK) are naturally occurring Cu(II)-chelating motifs in human serum and cerebrospinal fluid. Here, the sensitive thermodynamic technique isothermal titration calorimetry was used to study the energetics of Cu(II) binding to DAHK and GHK peptides in the presence of the weaker ligand glycine as a competitor. DAHK and GHK bind Cu(II) predominantly in a 1:1 stoichiometry with conditional dissociation constants [i.e., at pH 7.4, in the absence of the competing chelators glycine and 2-(4-(2-hydroxyethyl)-1-piperazinyl)ethanesulfonic acid buffer] of 2.6 ± 0.4 × 10−14 M and 7.0 ± 1.0 × 10−14 M, respectively. Furthermore, the apparent ΔH values were measured and the number of protons released upon Cu(II) binding was determined by performing experiments in different buffers. This allowed us to determine the conditional ΔG, ΔH, and ΔS, i.e., corrected for the contributions of the weaker ligand glycine and the buffer at pH 7.4. We found that the entropic and enthalpic contributions to the Cu(II) binding to GHK and DAHK are distinct, with a enthalpic contribution for GHK. The thermodynamic parameters obtained correspond well to those in the literature obtained by other techniques, suggesting that the use of the weaker ligand glycine as a competitor in isothermal titration calorimetry provides accurate data for Cu(II) binding to high-affinity peptides, which cannot be accurately determined without the use of a competitor ligand.  相似文献   

9.
Kinetics of ligand binding to the type 1 Fc epsilon receptor on mast cells   总被引:2,自引:0,他引:2  
Rates of association and dissociation of several specific monovalent ligands to and from the type I Fc epsilon receptor (Fc epsilon RI) were measured on live mucosal type mast cells of the rat line RBL-2H3. The ligands employed were a monoclonal murine IgE and Fab fragments prepared from three different, Fc epsilon RI-specific monoclonal IgG class antibodies. These monoclonals (designated H10, J17, and F4) were shown previously to trigger mediator secretion by RBL-2H3 mast cells upon binding to and dimerization of the Fc epsilon RI. Analysis of the kinetics shows that the minimal mechanism to which all data can be fitted involves two consecutive steps: namely, ligand binding to a low-affinity state of the receptor, followed by a conformational transition into a second, higher affinity state h of the receptor-ligand complex. These results resolve the recently noted discrepancy between the affinity of IgE binding to the Fc epsilon RI as determined by means of binding equilibrium measurements [Ortega et al. (1988) EMBO J. 7, 4101] and the respective parameter derived from the ratio of the rate constant of rat IgE dissociation and the initial rate of rat IgE association [Wank et al. (1983) Biochemistry 22, 954]. The probability of undergoing the conformational transition differs for the four different Fc epsilon RI-ligand complexes: while binding of Fab-H10 and IgE favors the h state, binding of Fab-J17 and Fab-F4 preferentially maintains the low-affinity 1 state (at 25 degrees C). The temperature dependence of the ligand interaction kinetics with the Fc epsilon RI shows that the activation barrier for ligand association is determined by positive enthalpic and entropic contributions. The activation barrier of the 1----h transition, however, has negative enthalpic contributions counteracted by a decrease in activation entropy. The h----1 transition encounters a barrier that is predominantly entropic and similar for all ligands employed, thus suggesting that the Fc epsilon RI undergoes a similar conformational transition upon binding any of the ligands.  相似文献   

10.
Nucleoside diphosphate kinases (NDKs) play a key role in maintaining the intracellular energy resources as well as the balance of nucleotide pools. Recently, attention has been directed to NDKs owing to its role in activating various chemotherapeutic agents. The binding affinity of different nucleotides with P. falciparum NDK was varied according to the following order ADP ~ GDP > dGDP > dADP > dTDP > CDP > dCDP > UDP. The binding of purines nucleotides was stronger than pyrimidines. Furthermore, PfNDK showed more preferences to ribonucleotides over deoxyribonucleotides. Pyrimidines showed lower negative free energy compared with that of purines. The interaction of all nucleotides showed favorable enthalpic and entropic terms. However, the enthalpic terms were the main deriving forces for purine nucleotides, while the entropic contributions were the predominant forces for pyrimidines. Interestingly, TDP showed marked affinity and more favorable enthalpic and less entropic contributions. In conclusion, the size of nucleotide was the critical factor in PfNDK ligand affinity.  相似文献   

11.
The binding interactions between dimeric glutathione transferase from Schistosoma japonicum (Sj26GST) and bromosulfophthalein (BS) or 8-anilino-1-naphthalene sulfonate (ANS) were characterised by fluorescence spectroscopy and isothermal titration calorimetry (ITC). Both ligands inhibit the enzymatic activity of Sj26GST in a non-competitive form. A stoichiometry of 1 molecule of ligand per mole of dimeric enzyme was obtained for the binding of these ligands. The affinity of BS is higher (K(d)=3.2 microM) than that for ANS (K(d)=195 microM). The thermodynamic parameters obtained by calorimetric titrations are pH-independent in the range of 5.5 to 7.5. The interaction process is enthalpically driven at all the studied temperatures. This enthalpic contribution is larger for the ANS anion than for BS. The strongly favourable enthalpic contribution for the binding of ANS to Sj26GST is compensated by a negative entropy change, due to enthalpy-entropy compensation. DeltaG degrees remains almost invariant over the temperature range studied. The free energy change for the binding of BS to Sj26GST is also favoured by entropic contributions at temperatures below 32 degrees C, thus indicating a strong hydrophobic interaction. Heat capacity change obtained for BS (DeltaC(p) degrees =(-580.3+/-54.2) cal x K(-1) mol(-1)) is twofold larger (in absolute value) than for ANS (DeltaC(p) degrees =(-294.8+/-15.8) cal x K(-1) mol(-1)). Taking together the thermodynamic parameters obtained for these inhibitors, it can be argued that the possible hydrophobic interactions in the binding of these inhibitors to L-site must be accompanied by other interactions whose contribution is enthalpic. Therefore, the non-substrate binding site (designed as ligandin) on Sj26GST may not be fully hydrophobic.  相似文献   

12.
蛋白质-蛋白质对接中打分函数的研究   总被引:1,自引:0,他引:1  
通过分析蛋白质-蛋白质间的静电、疏水作用和熵效应与相对于晶体结构的蛋白质主链原子的均方根偏差(RMSD)的相关性,定量地考查了它们在蛋白质-蛋白质对接中作为打分函数评价近天然构象的能力。对7个蛋白质复合物体系的分析表明,就水化能而言,原子接触势模型(ACE)优于原子水化参数模型(ASP),且修正的ACE模型具有更好的评价近天然构象的能力;水化能与静电能结合对评价能力有进一步的提高。最后,我们将静电和修正的ACE水化能结合作为打分函数用于36个蛋白质复合物体系的对接研究,进一步证实了这两种能量项的组合能有效地将近天然结构从分子对接模式中区分出来。  相似文献   

13.
We report a Quantum mechanics/Molecular Mechanics–Poisson-Boltzmann/ Surface Area (QM/MM-PB/SA) method to calculate the binding free energy of c-Abl human tyrosine kinase by combining the QM and MM principles where the ligand is treated quantum mechanically and the rest of the receptor by classical molecular mechanics. To study the role of entropy and the flexibility of the protein ligand complex in a solvated environment, molecular dynamics calculations are performed using a hybrid QM/MM approach. This work shows that the results of the QM/MM approach are strongly correlated with the binding affinity. The QM/MM interaction energy in our reported study confirms the importance of electronic and polarization contributions, which are often neglected in classical MM-PB/SA calculations. Moreover, a comparison of semi-empirical methods like DFTB-SCC, PM3, MNDO, MNDO-PDDG, and PDDG-PM3 is also performed. The results of the study show that the implementation of a DFTB-SCC semi-empirical Hamiltonian that is derived from DFT gives better results than other methods. We have performed such studies using the AMBER molecular dynamic package for the first time. The calculated binding free energy is also in agreement with the experimentally determined binding affinity for c-Abl tyrosine kinase complex with Imatinib.  相似文献   

14.
The volume changes accompanying ligand binding to proteins are thermodynamically important and could be used in the design of compounds with specific binding properties. Measuring the volumetric properties could yield as much information as the enthalpic properties of binding. Pressure-based methods are significantly more laborious than temperature methods and are underused. Here we present a pressure shift assay (PressureFluor, analogous to the ThermoFluor thermal shift assay) that uses high pressure to denature proteins. The PressureFluor method was used to study the ligand binding thermodynamics of heat shock protein 90 (Hsp90). Ligands stabilize the protein against pressure denaturation, similar to the stabilization against temperature denaturation. The equations that relate the ligand dosing, protein concentration, and binding constant with the volumes and compressibilities of unfolding and binding are presented.  相似文献   

15.
The process cascade leading to the final accommodation of the carbohydrate ligand in the lectin's binding site comprises enthalpic and entropic contributions of the binding partners and solvent molecules. With emphasis on lactose, N-acetyllactosamine, and thiodigalactoside as potent inhibitors of binding of galactoside-specific lectins, the question was addressed to what extent these parameters are affected as a function of the protein. The microcalorimetric study of carbohydrate association to the galectin from chicken liver (CG-16) and the agglutinin from Viscum album (VAA) revealed enthalpy-entropy compensation with evident protein type-dependent changes for N-acetyllactosamine. Reduction of the entropic penalty by differential flexibility of loops or side chains and/or solvation properties of the protein will have to be reckoned with to assign a molecular cause to protein type-dependent changes in thermodynamic parameters for lectins sharing the same monosaccharide specificity.  相似文献   

16.
Recent hydrogen-deuterium exchange experiments have highlighted tightening and loosening of protein structures upon ligand binding, with changes in bonding (DeltaH) and order (DeltaS) which contribute to the overall thermodynamics of ligand binding. Tightening and loosening show that ligand binding respectively stabilises or destabilises the internal structure of the protein, i.e. it shows positive or negative cooperativity between ligand binding and the receptor structure. In the case of membrane-bound receptors, such as G protein-coupled receptors (GPCRs) and ligand gated ion channel receptors (LGICRs), most binding studies have focussed on association/dissociation constants. Where these have been broken down into enthalpic and entropic contributions, the phenomenon of "thermodynamic discrimination" between antagonists and agonists has often been noted; e.g. for a receptor where agonist binding is predominantly enthalpy driven, antagonist binding is predominantly entropy driven and vice versa. These data have not previously been considered in terms of the tightening, or loosening, of receptor structures that respectively occurs upon positively, or negatively, cooperative binding of ligand. Nor have they been considered in light of the homo- and hetero-oligomerisation of GPCRs and the possibility of ligand-induced changes in oligomerisation. Here, we argue that analysis of the DeltaH and DeltaS of ligand binding may give useful information on ligand-induced changes in membrane-bound receptor oligomers, relevant to the differing effects of agonists and antagonists.  相似文献   

17.
The relative contributions of the allosteric and affinity factors toward the change in p50 have been calculated for a series of effectors of hemoglobin (Hb). Shifts in the ligand affinity of deoxy Hb and the values for 50% ligand saturation (p50) were obtained from oxygen equilibrium data. Because the high-affinity parameters (liganded conformation) are poorly determined from the equilibrium curves, they were determined from kinetic measurements of the association and dissociation rates with CO as ligand. The CO on-rates were obtained by flash photolysis measurements. The off-rates were determined from the rate of oxidation of HbCO by ferricyanide, or by replacement of CO with NO. The partition function of fully liganded hemoglobin for oxygen and CO is only slightly changed by the effectors. Measurements were made in the presence of the effectors 2,3-diphosphoglycerate (DPG), inositol hexakisphosphate (IHP), bezafibrate (Bzf), and two recently synthesized derivatives of Bzf (LR16 and L35). Values of p50 change by over a factor of 60; the on-rates decrease by nearly a factor of 8, with little change in the off-rates for the liganded conformation. The data indicate that both allosteric and affinity parameters are changed by the effectors; the changes in ligand affinity represent the larger contribution toward shifts in p50.  相似文献   

18.
The bacterial enzyme aminoglycoside phosphotransferase(3′)-IIIa (APH) confers resistance against a wide range of aminoglycoside antibiotics. In this study, we use the Gaussian network model to investigate how the binding of nucleotides and antibiotics influences the dynamics and thereby the ligand binding properties of APH. Interestingly, in NMR experiments, the dynamics differ significantly in various APH complexes, although crystallographic studies indicate that no larger conformational changes occur upon ligand binding. Isothermal titration calorimetry also shows different thermodynamic contributions to ligand binding. Formation of aminoglycoside-APH complexes is enthalpically driven, while the enthalpic change upon aminoglycoside binding to the nucleotide-APH complex is much smaller. The differential effects of nucleotide binding and antibiotic binding to APH can be explained theoretically by single-residue fluctuations and correlated motions of the enzyme. The surprising destabilization of β-sheet residues upon nucleotide binding, as seen in hydrogen/deuterium exchange experiments, shows that the number of closest neighbors does not fully explain residue flexibility. Additionally, we must consider correlated motions of dynamic protein domains, which show that not only connectivity but also the overall protein architecture is important for protein dynamics.  相似文献   

19.
Solution structure of the sixth LDL-A module of the LDL receptor   总被引:5,自引:0,他引:5  
North CL  Blacklow SC 《Biochemistry》2000,39(10):2564-2571
The low-density lipoprotein receptor (LDLR) is the primary mechanism for uptake of plasma cholesterol into cells and serves as a prototype for an entire class of cell surface receptors. The amino-terminal domain of the receptor consists of seven LDL-A modules; the third through the seventh modules all contribute to the binding of low-density lipoproteins (LDLs). Here, we present the NMR solution structure of the sixth LDL-A module (LR6) from the ligand binding domain of the LDLR. This module, which has little recognizable secondary structure, retains the essential structural features observed in the crystal structure of LDL-A module five (LR5) of the LDLR. Three disulfide bonds, a pair of buried residues forming a hydrophobic "mini-core", and a calcium-binding site that serves to organize the C-terminal lobe of the module all occupy positions in LR6 similar to those observed in LR5. The striking presence of a conserved patch of negative surface electrostatic potential among LDL-A modules of known structure suggests that ligand recognition by these repeats is likely to be mediated in part by electrostatic complementarity of receptor and ligand. Two variants of LR6, identified originally as familial hypercholesterolemia (FH) mutations, have been investigated for their ability to form native disulfide bonds under conditions that permit disulfide exchange. The first, E219K, lies near the amino-terminal end of LR6, whereas the second, D245E, alters one of the aspartate side chains that directly coordinate the bound calcium ion. After equilibration at physiologic calcium concentrations, neither E219K nor D245E folds to a unique disulfide isomer, indicating that FH mutations both within and distant from the calcium-binding site give rise to protein-folding defects.  相似文献   

20.
Information about ligand binding, dissociation, internalization, and intracellular processing and about receptor turnover, processing, and insertion into the membrane is contained in the time-dependent changes in concentrations of membrane-associated and internalized ligand. Single experiments similar in design to those typically performed for Scatchard analyses of binding data conducted at physiological temperature and in the absence of inhibitors of ligand-receptor complex internalization and degradation can provide kinetic data sufficient to permit derivation of all the respective rate constants by numerical methods. We developed an analytical solution of the kinetic model which assumes that all of these processes follow first order kinetics. The model represents interactions of surface receptors (R)s, the surface ligand-receptor complex (LR)s and internalized receptor-ligand complex (LR)I: d[R]S/dt = Vr - kt[R]S - ka[L] [R]S + kd [LR]S; d[LR]S/dt = ka[L] [R]S - kd[LR]S - ke[LR]S; d[LR]I/dt = ke[LR]S - kh[LR]I; Vr is the constant rate of insertion of receptors into the membrane, kt is the internalization rate constant for free receptors, ka and kd are association and dissociation rate constants for ligand-surface receptor interaction, ke is the internalization rate constant for ligand-receptor complexes, and kh is the intracellular ligand decomposition rate constant. The interaction of radioiodinated human recombinant interferon-alpha 2a with the human alveolar lung carcinoma cell line, A549, was adequately accounted for by the model. The rate constants, numerically derived from time-dependent concentrations of surface-bound and internalized ligand of other systems taken from the literature, were in agreement with values of these rate constants individually measured by steady-state experiments. In cases where the fate of internalized radioactivity was more complex than assumed by the model, the parameters ka, kt, (kd + ke) and Vr could be derived from the time dependence of [LR]S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号