首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
RNA produced from a number of genes on the mitochondrial (mt) DNA of Physarum polycephalum have nucleotides inserted at specific sites in their sequence. These insertions are spaced at approximately 25 nucleotide intervals and create open reading frames in mRNA and functional structure in tRNAs and rRNAs. Although most of the insertions at a site are single cytidines; single uridines and certain dinucleotides containing adenosine and guanosine as well as cytidine and uridine are also occasionally inserted at certain sites. This mixed nucleotide insertional RNA editing is unique among currently characterized editing systems.  相似文献   

4.
The complete sequence of the mitochondrial DNA (mtDNA) of the true slime mold Physarun polycephalum has been determined. The mtDNA is a circular 62,862-bp molecule with an A+T content of 74.1%. A search with the program BLAST X identified the protein-coding regions. The mitochondrial genome of P. polycephalum was predicted to contain genes coding for 12 known proteins [for three cytochrome c oxidase subunits, apocytochrome b, two F1Fo-ATPase subunits, five NADH dehydrogenase (nad) subunits, and one ribosomal protein], two rRNA genes, and five tRNA genes. However, the predicted ORFs are not all in the same frame, because mitochondrial RNA in P. polycephalum undergoes RNA editing to produce functional RNAs. The nucleotide sequence of an nad7 cDNA showed that 51 nucleotides were inserted at 46 sites in the mRNA. No guide RNA-like sequences were observed in the mtDNA of P. polycephalum. Comparison with reported Physarum mtDNA sequences suggested that sites of RNA editing vary among strains. In the Physarum mtDNA, 20 ORFs of over 300 nucleotides were found and ORFs 14 19 are transcribed.  相似文献   

5.
6.
7.
Evolution of four types of RNA editing in myxomycetes   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

8.
Computational prediction of RNA editing sites   总被引:1,自引:0,他引:1  
MOTIVATION: Some organisms edit their messenger RNA resulting in differences between the genomic sequence for a gene and the corresponding messenger RNA sequence. This difference complicates experimental and computational attempts to find and study genes in organisms with RNA editing even if the full genomic sequence is known. Nevertheless, knowledge of these editing sites is crucial for understanding the editing machinery of these organisms. RESULTS: We present a computational technique that predicts the position of editing sites in the genomic sequence. It uses a statistical approach drawing on the protein sequences of related genes and general features of editing sites of the organism. We apply the method to the mitochondrion of the slime mold Physarum polycephalum. It correctly predicts over 90% of the amino acids and over 70% of the editing sites.  相似文献   

9.
10.
11.
12.
Gene finding is complicated in organisms that exhibit insertional RNA editing. Here, we demonstrate how our new algorithm Predictor of Insertional Editing (PIE) can be used to locate genes whose mRNAs are subjected to multiple frameshifting events, and extend the algorithm to include probabilistic predictions for sites of nucleotide insertion; this feature is particularly useful when designing primers for sequencing edited RNAs. Applying this algorithm, we successfully identified the nad2, nad4L, nad6 and atp8 genes within the mitochondrial genome of Physarum polycephalum, which had gone undetected by existing programs. Characterization of their mRNA products led to the unanticipated discovery of nucleotide deletion editing in Physarum. The deletion event, which results in the removal of three adjacent A residues, was confirmed by primer extension sequencing of total RNA. This finding is remarkable in that it comprises the first known instance of nucleotide deletion in this organelle, to be contrasted with nearly 500 sites of single and dinucleotide addition in characterized mitochondrial RNAs. Statistical analysis of this larger pool of editing sites indicates that there are significant biases in the 2 nt immediately upstream of editing sites, including a reduced incidence of nucleotide repeats, in addition to the previously identified purine-U bias.  相似文献   

13.
14.
Pigmentation and sporulation in selected Myxomycetes   总被引:1,自引:0,他引:1  
Chemical, chromatographic and spectrometric methods are used to characterize plasmodial pigments and determine relationships between pigmentation and sporulation in selected Myxomycetes. In Physarum gyrosum (white) a single pigment is identified and characterized as a flavone. Physarum polycephalum (yellow) and Didymium iridis (brown) contain four and six components, respectively, in their plasmodial pigments which test negatively for flavones but show the presence of some type of phenolic compound. No detectable component is identified in the white plasmodium of Didymium squamulosum which proved to be independent of light for fruiting. The absorption spectra of all species that were light sensitive for fruiting showed common peaks in the 300–400-mμ region, among others. Pigment changes associated with light absorption are reported for some white, yellow and brown plasmodial types. In Physarum gyrosum a yellow pigment forms in light which did not show the characteristic flavones present in the white plasmodial stage. Changes in absorption spectra are reported for Physarum polycephalum, Didymium iridis and Didymium squamulosum as the plasmodial pigments change prior to fruiting. Results show a close relationship between the physiology of plasmodial pigmentation and sporulation in the Myxomycete species studied.  相似文献   

15.
16.
RNA editing is a process whereby nucleotide insertion, deletion, or base substitution results in the production of an RNA whose sequence differs from that of its template. The mitochondrial RNAs of Physarum polycephalum are processed specifically at multiple sites by both mono- and dinucleotide insertions, as well as apparent cytidine (C) to uridine (U) changes. The precise mechanism and timing of these processing events are currently unknown. We describe here the development of an isolated mitochondrial system in which exogenously supplied nucleotides can be incorporated into RNAs under defined conditions. The results of S1 nuclease protection, nearest neighbor and RNase T1 fingerprint analyses indicate that the vast majority of these newly synthesized mitochondrial RNAs have been accurately and efficiently processed by both mono- and dinucleotide insertions. This work provides a direct demonstration of faithful nucleotide insertion in a mitochondrial editing system. In contrast, the newly synthesized RNAs are not processed by C to U changes in the isolated mitochondria, suggesting that the base changes observed in Physarum are unlikely to occur via a deletion/insertion mechanism.  相似文献   

17.
18.
Regions of the Didymium iridis mitochondrial genome were identified with similarity to typical mitochondrial genes; however, these regions contained numerous stop codons. We used RT-PCR and DNA sequencing to determine whether, through RNA editing, these regions were transcribed into mRNAs that could encode functional proteins. Ten putative gene regions were examined: atp1, atp6, atp8, atp9, cox1, cox2, cytb, nad4L, nad6, and nad7. The cDNA sequences of each gene could encode a functional mitochondrial protein that was highly conserved compared with homologous genes. The type of editing events and editing sequence features were very similar to those observed in the homologous genes of Physarum polycephalum, though the actual editing locations showed a variable degree of conservation. Edited sites were compared with encoded sites in D. iridis and P. polycephalum for all 10 genes. Edited sequence for a portion of the cox1 gene was available for six myxomycetes, which, when compared, showed a high degree of conservation at the protein level. Different types of editing events showed varying degrees of site conservation with C-to-U base changes being the least conserved. Several aspects of single C insertion editing events led to the preferential creation of hydrophobic amino acid codons that may help to minimize adverse effects on the resulting protein structure.  相似文献   

19.
We have determined the telomeric DNA sequence of the acellular slime molds Didymium iridis and Physarum polycephalum. In both organisms the telomeres consist of tandem repeats of the hexamer 5'(TTAGGG)3'. This sequence was determined by cloning and sequencing the telomeric fragment of the linear extrachromosomal ribosomal DNA from Didymium, as well as direct end labeling and sequencing the rDNA from both organisms. Interestingly, this sequence is identical to the telomeric DNA sequence of the flagellated protozoan Trypanosoma brucei, and suggests that despite the diversity of telomeric sequences previously determined in lower eukaryotes, the necessity to create functional telomeres has led to constraints on these sequences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号