首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We compared the time courses of lung mechanical changes with intravenous (iv) injection vs. aerosol administration of histamine, methacholine, and ACh in dogs. We interpret these results in terms of a spring-and-dashpot model of airway smooth muscle receiving activation via a tissue compartment when agonist is delivered by the iv route and through an additional airway wall compartment when it is delivered by the aerosol route. The model accurately accounts for the principal features of the respiratory system elastance response curves. It also accounts for the differences between iv and aerosol responses, supporting the notion that agonist delivered by aerosol has to traverse a longer pathway to the airway smooth muscle than does agonist delivered iv. The time constants representing diffusive exchange of agonist between compartments were not significantly different for the three agonists, suggesting that the three agonists shared a common principal means of clearance, which was presumably blood flow.  相似文献   

2.
The effect of deep inspiration (DI) on airway responsiveness differs in asthmatic and normal human subjects. The mechanism for the effects of DI on airway responsiveness in vivo has not been identified. To elucidate potential mechanisms, we compared the effects of DI imposed before or during induced bronchoconstriction on the airway response to methacholine (MCh) in rabbits. The changes in airway resistance in response to intravenous MCh were continuously monitored. DI depressed the maximum response to MCh when imposed before or during the MCh challenge; however, the inhibitory effect of DI was greater when imposed during bronchoconstriction. Because immature rabbits have greater airway reactivity than mature rabbits, we compared the effects of DI on their airway responses. No differences were observed. Our results suggest that the mechanisms by which DI inhibits airway responsiveness do not depend on prior activation of airway smooth muscle (ASM). These results are consistent with the possibility that reorganization of the contractile apparatus caused by stretch of ASM during DI contributes to depression of the airway response.  相似文献   

3.
The effects of three increasing doses of platelet-activating factor (PAF) on airway caliber and methacholine bronchial responsiveness were studied. On separate occasions nine normal subjects inhaled a single cumulative provocation concentration of methacholine (control) causing a 40% fall (PC40 Vp30) in maximum expiratory flow rate at 70% of base-line vital capacity below total lung capacity during a partial forced expiratory maneuver or 100 or 200 micrograms PAF, and seven subjects inhaled a further dose of 400 micrograms PAF. Methacholine responsiveness was measured before, at 3 and 7 h, then on days 1, 2, 3, 4, 7, 10, and 14 after each challenge. The maximum falls in Vp30 appeared dose dependent, but a significant difference between the magnitude of the responses was only observed between the 400- and 100-micrograms PAF dose (P less than 0.05). During the control period repeated methacholine challenges resulted in a progressive increase in cumulative provocation concentration of an agonist causing a 20% fall in forced expiratory volume in 1 s from base line, reaching significance on days 1 and 2 (2.44- and 2.4-fold of base line, respectively, P less than 0.01) before returning to base line on day 7. No difference was seen in methacholine responsiveness after any of the three doses of PAF compared with that after the control. We conclude that PAF causes dose-dependent bronchoconstriction but does not change airways responsiveness to methacholine and that repeated high-dose methacholine challenge leads to loss of responsiveness to this agonist.  相似文献   

4.
NAD(P)H oxidase is one of the critical enzymes mediating cellular production of reactive oxygen species and has a central role in airway smooth muscle (ASM) cell proliferation. Since reactive oxygen species also affect ASM contractile response, we hypothesized a regulatory role of NAD(P)H oxidase in ASM contractility. We therefore studied ASM function in wild-type mice (C57BL/6J) and mice deficient in a component (p47phox) of NAD(P)H oxidase. In histological sections of the trachea, we found that the area occupied by ASM was 17% more in p47(phox-/-) than in wild-type mice. After correcting for the difference in ASM content, we found that force generation did not vary between the two genotypes. Similarly, their ASM shortening velocity, maximal power, and sensitivity to acetylcholine, as well as airway responsiveness to methacholine in vivo, were not significantly different. The main finding of this study was a significantly reduced ASM relaxation in p47phox-/- compared with wild-type mice both during the stimulus and after the end of stimulation. The tension relaxation attained at the 20th second of electric field stimulation was, respectively, 17.6 +/- 2.4 and 9.2 +/- 2.3% in null and wild-type mice (P <0.01 by t-test). Similar significant differences were found in the rate of tension relaxation and the time required to reduce tension by one-half. Our data suggest that NAD(P)H oxidase may have a role in the structural arrangement and mechanical properties of the airway tissue. Most importantly, we report the first evidence that the p47phox subunit of NAD(P)H oxidase plays a role in ASM relaxation.  相似文献   

5.
Antigen sensitization was induced in six Basenji-Greyhound (BG) dogs by weekly aerosol exposure to Ascaris suum. The effects on airway responsiveness to inhaled methacholine were studied before and at least 2 wk following Ascaris sensitization. All dogs developed detectable serum levels of Ascaris-specific immunoglobulin E (IgE), and five out of six dogs developed airway responsiveness to antigen over the 4- to 6-mo period. This was accompanied by a decrease rather than an increase in airway responsiveness to inhaled methacholine. When dogs were challenged with methacholine 30 min after Ascaris antigen aerosol challenge, however, dogs reactive to Ascaris became hyperresponsive to methacholine. The magnitude of the response to antigen correlated (r = 0.85) inversely with the dose of methacholine increasing pulmonary resistance 200%. These data show that in BG dogs airway responsiveness to methacholine is increased by acute antigen exposure but that sensitization of previously unsensitized dogs does not increase nonspecific airway responsiveness.  相似文献   

6.
Greater airway responsiveness in healthy juveniles is considered a factor in the higher asthma prevalence at a young age compared with adults. We have developed a guinea pig maturational model that utilizes tracheal strips from 1-week-, 3-week-, and 3-month-old guinea pigs to study the role of airway smooth muscle (ASM) in juvenile airway hyperresponsiveness. Because a reduced ability of ASM to spontaneously relax may contribute to airway hyperresponsiveness by maintaining bronchospasm and thus high airway resistance, we have employed this model to study ASM spontaneous relaxation during electrical field stimulation (EFS). Since relaxation during EFS had been neither described nor quantified during maturation, we developed new indices that allowed an appropriate comparison of the relaxing response from strips of different age animals. Using these indices we found that, whereas strips from adult animals relax to a level of tension similar to that found in the absence of stimulation, this ability to spontaneously relax is essentially absent in trachealis from infant animals. These results confirmed that maturation of ASM relaxation may play a role in juvenile airway hyperresponsiveness and that our maturational model is suitable to study the mechanisms regulating spontaneous relaxation in physiological conditions. We investigated the role of prostanoids in ASM relaxation and showed that cyclooxygenase inhibition increases relaxation in infant ASM to levels similar to adults. These results suggest that prostanoids regulate the ability of ASM to spontaneously relax, i.e., they reduce relaxation. We have produced preliminary data suggesting a maturational change in the level of prostanoids. Moreover, the possible action of acetylcholinesterase on maturation of ASM relaxation is discussed here on the basis of a preliminary study. We suggest that impairment of ASM relaxation likely contributes to increased airway responsiveness.  相似文献   

7.
The effects of repeated antigen inhalation on airway cellular composition and airway responsiveness were examined in primates. Airway cellular composition was assessed by bronchoalveolar lavage (BAL), and airway responsiveness was measured as the bronchoconstrictor response to cumulative methacholine dose-response determinations over the course of a 10-wk study. Control animals, exposed to repeated vehicle inhalation challenges, were tested in parallel with the antigen-challenged group. Repeated antigen inhalation resulted in a prolonged inflammatory reaction characterized by a large increase in airway eosinophils (3 +/- 1 to 59 +/- 15%, P less than 0.01). Airway eosinophilia was associated with an increase in airway responsiveness as indicated by a leftward shift in the methacholine dose-response curves, an increase in the slope of the dose-response curves, and a decrease in PC100 values (the dose of methacholine required to cause a 100% increase in lung resistance). The number of BAL eosinophils and the level of eosinophil major basic protein in BAL correlated significantly with methacholine PC100 values (r = 0.61, P less than 0.01 and r = 0.64, P less than 0.01, respectively). Histological examination of lung biopsy samples taken at week 10 of the study demonstrated a striking infiltration of eosinophils in the antigen-challenged animals. These results support earlier observations that demonstrated an association between increases in airway eosinophils and increases in airway responsiveness and suggest that eosinophils are involved in the pathogenesis of hyperresponsive airways.  相似文献   

8.
Cell adhesion molecules (CAMs) have been importantly implicated in the pathobiology of the airway responses in allergic asthma, including inflammatory cell recruitment into the lungs and altered bronchial responsiveness. To elucidate the mechanism of CAM-related mediation of altered airway responsiveness in the atopic asthmatic state, the expressions and actions of intercellular adhesion molecule-1 (ICAM-1) and its counterreceptor ligand lymphocyte function-associated antigen-1 (LFA-1; i.e., CD11a/CD18) were examined in isolated rabbit airway smooth muscle (ASM) tissues and cultured human ASM cells passively sensitized with sera from atopic asthmatic patients or nonatopic nonasthmatic (control) subjects. Relative to control tissues, the atopic asthmatic sensitized ASM exhibited significantly enhanced maximal contractility to acetylcholine and attenuated relaxation responses to isoproterenol. These proasthmatic changes in agonist responsiveness were ablated by pretreating the atopic sensitized tissues with a monoclonal blocking antibody (MAb) to either ICAM-1 or CD11a, whereas a MAb directed against the related beta(2)-integrin Mac-1 had no effect. Moreover, relative to control tissues, atopic asthmatic sensitized ASM cells displayed an autologously upregulated mRNA and cell surface expression of ICAM-1, whereas constitutive expression of CD11a was unaltered. Extended studies further demonstrated that 1) the enhanced expression and release of soluble ICAM-1 by atopic sensitized ASM cells was prevented when cells were pretreated with an interleukin (IL)-5-receptor-alpha blocking antibody and 2) administration of exogenous IL-5 to naive (nonsensitized) ASM cells induced a pronounced soluble ICAM-1 release from the cells. Collectively, these observations provide new evidence demonstrating that activation of the CAM counterreceptor ligands ICAM-1 and LFA-1, both of which are endogenously expressed in ASM cells, elicits autologously upregulated IL-5 release and associated changes in ICAM-1 expression and agonist responsiveness in atopic asthmatic sensitized ASM.  相似文献   

9.
We examined the effect of ozone (O3) on muscarinic bronchial reactivity in the guinea pig and compared reactivity determined by two different routes of agonist delivery. Reactivity before and from 4 h to 2 days after O3 exposure (3.0 ppm, 2 h) was determined by measuring specific airway resistance upon administration of intravenous acetylcholine and/or aerosolized methacholine challenge in 34 unanesthetized, spontaneously breathing animals. Before exposure, we observed more gradual and reproducible results to intravenous agonist. After exposure, hyperreactivity to parenteral agonist occurred consistently, but not to inhaled agonist. Hyperreactivity demonstrable by either route was similar in magnitude and time course within 14 h of exposure. Two days later, hyperreactivity to inhaled agonist had remitted; that to intravenous drug persisted. Our results indicate that variability in the occurrence and time course of O3-induced hyperreactivity to inhaled agonist may be a consequence of the technique employed. The consistent occurrence of hyperreactivity after O3 to parenteral agonist suggests mechanisms other than airway mucosal hyperpermeability are responsible for this hyperreactivity.  相似文献   

10.
Muscarinic receptors and platelet-derived growth factor (PDGF) receptors synergistically induce proliferation of airway smooth muscle (ASM), but the pathways that regulate these effects are not yet completely identified. We hypothesized that glycogen synthase kinase-3 (GSK-3), a kinase that represses several promitogenic signaling pathways in its unphosphorylated form, is cooperatively inhibited by PDGF and muscarinic receptors in immortalized human ASM cell lines. PDGF or methacholine alone induced rapid GSK-3 phosphorylation. This phosphorylation was sustained only for PDGF; however, methacholine potentiated PDGF-induced sustained GSK-3 phosphorylation. Synergistic effects of methacholine also were observed on PDGF-induced retinoblastoma protein (Rb) phosphorylation and cell proliferation. Suppression of GSK-3 inhibitory function using SB 216763 also augmented PDGF-induced Rb phosphorylation and cell cycle progression; this synergy was similar in magnitude to that seen for methacholine with PDGF. GSK-3 phosphorylation induced by methacholine required PKC, since it was abolished by GF 109203X and G? 6976; however, inhibition of PKC had no effect on cell responses to PDGF. PKC inhibition also specifically abolished the synergistic effect of methacholine on PDGF-induced GSK-3 phosphorylation and cell proliferation. Collectively, these results show that GSK-3 plays a key repressive role in ASM cell proliferation. Moreover, muscarinic receptors mediate PKC-dependent GSK-3 inhibition, and this appears to be a primary mechanism underpinning augmentation of PDGF-induced cell growth.  相似文献   

11.
The molecular mechanisms by which bradykinin induces excessive airway obstruction in asthmatics remain unknown. Transforming growth factor (TGF)-beta has been involved in regulating airway inflammation and remodeling in asthma, although it is unknown whether TGF-beta can modulate bradykinin-associated bronchial hyperresponsiveness. To test whether TGF-beta directly modulates airway smooth muscle (ASM) responsiveness to bradykinin, isolated murine tracheal rings were used to assess whether TGF-beta alters ASM contractile responsiveness to bradykinin. Interestingly, we found TGF-beta-treated murine rings (12.5 ng/ml, 18 h) exhibited increased expression of bradykinin 2 (B(2)) receptors and became hyperreactive to bradykinin, as shown by increases in maximal contractile responses and receptor distribution. We investigated the effect of TGF-beta on bradykinin-evoked calcium signals since calcium is a key molecule regulating ASM excitation-contraction coupling. We reported that TGF-beta, in a dose- (0.5-10 ng/ml) and time- (2-24 h) dependent manner, increased mRNA and protein expression of the B(2) receptor in cultured human ASM cells. Maximal B(2) receptor protein expression that colocalized with CD44, a marker of membrane cell surface, occurred after 18 h of TGF-beta treatment and was further confirmed using fluorescence microscopy. TGF-beta (2.5 ng/ml, 18 h) also increased bradykinin-induced intracellular calcium mobilization in fura-2-loaded ASM cells. TGF-beta-mediated enhancement of calcium mobilization was not attenuated with indomethacin, a cyclooxygenase inhibitor. These data demonstrate for the first time that TGF-beta may play a role in mediating airway hyperresponsiveness to bradykinin seen in asthmatics by enhancing ASM contractile responsiveness to bradykinin, possibly as a result of increased B(2) receptor expression and signaling.  相似文献   

12.
Major basic protein and other native cationic proteins increase airway hyperresponsiveness when administered to the luminal surface of the airways in vitro. To determine whether the same applies in vivo, we assessed airway responsiveness in rats challenged with both aerosolized and intravenously infused methacholine. We partitioned total lung resistance into its airway and tissue components using the alveolar capsule technique. Neither poly-l-lysine nor major basic protein altered baseline mechanics or its dependence on positive end-expiratory pressures ranging from 1 to 13 cmH(2)O. When methacholine was administered to the lungs as an aerosol, both cationic proteins increased responsiveness as measured by airway resistance, tissue resistance, and tissue elastance. However, responsiveness of all three parameters was unchanged when the methacholine was infused. Together, these findings suggest that cationic proteins alter airway responsiveness in vivo by an effect that is apparently limited to the bronchial epithelium.  相似文献   

13.
Although the mechanisms that underlie airway hyperresponsiveness in asthma are complex and involve a variety of factors, evidence now suggests that intrinsic abnormalities in airway smooth muscle (ASM) may play an important role. We previously reported that TNF-alpha, a cytokine involved in asthma, augments G-protein-coupled receptor (GPCR) agonist-evoked calcium responses in cultured ASM cells. Here we have extended our previous studies by investigating whether TNF-alpha also modulates the contractile and relaxant responses to GPCR activation using cultured murine tracheal rings. We found that in tracheal rings treated with 50 ng/ml TNF-alpha, carbachol-induced isometric force was significantly increased by 30% compared with those treated with diluent alone (P < 0.05). TNF-alpha also augmented KCl-induced force generation by 70% compared with rings treated with diluent alone (P < 0.01). The enhancing effect of TNF-alpha on carbachol-induced isometric force generation was completely abrogated in the tracheal rings obtained from TNF-alpha receptor (TNFR)1-deficient mice and in control rings treated with a TNF-alpha mutant that solely activates TNFR2. TNF-alpha also attenuated relaxation responsiveness to isoproterenol but not to PGE2 or forskolin. TNF-alpha modulatory effects on GPCR-induced ASM responsiveness were completely abrogated by pertussis toxin, an inhibitor of Gialpha proteins. Taken together, these data suggest that TNF-alpha may participate in the development of airway hyperresponsiveness in asthma via the modulation of ASM responsiveness to both contractile and beta-adrenoceptor GPCR agonists.  相似文献   

14.
In vivo, breathing movements, including tidal and deep inspirations (DIs), exert a number of beneficial effects on respiratory system responsiveness in healthy humans that are diminished or lost in asthma, possibly as a result of reduced distension (strain) of airway smooth muscle (ASM). We used bronchial segments from pigs to assess airway responsiveness under static conditions and during simulated tidal volume oscillations with and without DI and to determine the roles of airway stiffness and ASM strain on responsiveness. To simulate airway dilations during breathing, we cycled the luminal volume of liquid-filled segments. Volume oscillations (15 cycles/min) were set so that, in relaxed airways, they produced a transmural pressure increase of approximately 5-10 cmH(2)O for tidal maneuvers and approximately 5-30 cmH(2)O for DIs. ACh dose-response curves (10(-7)-3 x 10(-3) M) were constructed under static and dynamic conditions, and maximal response and sensitivity were determined. Airway stiffness was measured from tidal trough-to-peak pressure and volume cycles. ASM strain produced by DI was estimated from luminal volume, airway length, and inner wall area. DIs produced substantial ( approximately 40-50%) dilation, reflected by a decrease in maximal response (P < 0.001) and sensitivity (P < 0.05). However, the magnitude of bronchodilation decreased significantly in proportion to airway stiffening caused by contractile activation and an associated reduction in ASM strain. Tidal oscillations, in comparison, had little effect on responsiveness. We conclude that DI regulates airway responsiveness at the airway level, but this is limited by airway stiffness due to reduced ASM strain.  相似文献   

15.
Calcium chelators increase airway responsiveness   总被引:2,自引:0,他引:2  
To test the effect of calcium chelation on airway responsiveness to methacholine, purebred Basenji dogs were pretreated with a calcium-chelating aerosol (edetate disodium, Na2EDTA) or a placebo aerosol (saline or CaNa2-EDTA) and then challenged with methacholine bromide aerosols. The lowest dose of methacholine (0.15 mg/ml) produced no change in pulmonary resistance (RL) following pretreatment with the placebo aerosols, but RL increased (P less than 0.05) by 5.1 +/- 1.2 (SE) cmH2O X l-1 X s following pretreatment with Na2EDTA. The highest dose of methacholine (1.5 mg/ml) increased RL in all animals, but the increase was greater (P less than 0.01) following pretreatment with Na2EDTA (9.5 +/- 1.9 cm H2O X l-1 X s) than following pretreatment with a placebo aerosol (6.4 +/- 1.5 cmH2O X l-1 X s). These studies show that calcium-chelating aerosols significantly increase airway responsiveness and suggest that a localized calcium deficit may contribute to hyperresponsive airway disease.  相似文献   

16.
We hypothesized that ablation of smooth muscle α-actin (SM α-A), a contractile-cytoskeletal protein expressed in airway smooth muscle (ASM) cells, abolishes ASM shortening capacity and decreases lung stiffness. In both SM α-A knockout and wild-type (WT) mice, airway resistance (Raw) determined by the forced oscillation technique rose in response to intravenous methacholine (Mch). However, the slope of Raw (cmH(2)O·ml(-1)·s) vs. log(2) Mch dose (μg·kg(-1)·min(-1)) was lower (P = 0.007) in mutant (0.54 ± 0.14) than in WT mice (1.23 ± 0.19). RT-PCR analysis performed on lung tissues confirmed that mutant mice lacked SM α-A mRNA and showed that these mice had robust expressions of both SM γ-A mRNA and skeletal muscle (SKM) α-A mRNA, which were not expressed in WT mice, and an enhanced SM22 mRNA expression relative to that in WT mice. Compared with corresponding spontaneously breathing mice, mechanical ventilation-induced lung mechanical strain increased the expression of SM α-A mRNA in WT lungs; in mutant mice, it augmented the expressions of SM γ-A mRNA and SM22 mRNA and did not alter that of SKM α-A mRNA. In mutant mice, the expression of SM γ-A mRNA in the lung during spontaneous breathing and its enhanced expression following mechanical ventilation are consistent with the likely possibility that in the absence of SM α-A, SM γ-A underwent polymerization and interacted with smooth muscle myosin to produce ASM shortening during cholinergic stimulation. Thus our data are consistent with ASM in mutant mice experiencing compensatory mechanisms that modulated its contractile muscle capacity.  相似文献   

17.
Asthma is functionally characterized by increased airway sensitivity and reactivity. Multiple mechanisms are believed to underlie these functional disorders, including impairment of airway wall barrier function. One proposed mechanism of impaired barrier function is through the direct consequence of proteolytic properties of inhaled allergens, including house dust mite (HDM). Here, we have observed the direct effects of HDM on airway barrier function and response to nebulized or intravenous methacholine. HDM na?ve BALB/c mice were anesthetized, exposed to intranasal or intratracheal HDM (15 or 100 μg), and allowed to recover for 30 min or 2 h before methacholine challenge. A separate group of mice was exposed to intratracheal poly-L-lysine (PLL; 100 μg) for a duration of 30 min. This group served as a positive control for the presence of impaired barrier function and airway hypersensitivity. Negative control mice received saline challenges. Outcomes included assessment of lung mechanics in response to nebulized or intravenous methacholine as well as clearance of intratracheally instilled technetium-labeled ((99m)Tc) DTPA to evaluate airway epithelial barrier function. We found that PLL produced a leftward shift in the dose-response curve following nebulized but not intravenous methacholine challenge. This was associated with a significantly faster clearance of (99m)Tc-DTPA, indicating impairment in airway barrier function. However, HDM exposure did not produce changes in these outcomes when compared with saline-exposed mice. These findings suggest that direct impact on airway barrier function does not appear to be a mechanism by which HDM produces altered airway sensitivity in airway disease.  相似文献   

18.
Airway epithelial cells express beta(2)-adrenergic receptors (beta(2)-ARs), but their role in regulating airway responsiveness is unclear. With the Clara cell secretory protein (CCSP) promoter, we targeted expression of beta(2)-ARs to airway epithelium of transgenic (CCSP-beta(2)-AR) mice, thereby mimicking agonist activation of receptors only in these cells. In situ hybridization confirmed that transgene expression was confined to airway epithelium, and autoradiography showed that beta(2)-AR density in CCSP-beta(2)-AR mice was approximately twofold that of nontransgenic (NTG) mice. Airway responsiveness measured by whole body plethysmography showed that the methacholine dose required to increase enhanced pause to 200% of baseline (ED(200)) was greater for CCSP-beta(2)-AR than for NTG mice (345 +/- 34 vs. 157 +/- 14 mg/ml; P < 0.01). CCSP-beta(2)-AR mice were also less responsive to ozone (0.75 ppm for 4 h) because enhanced pause in NTG mice acutely increased to 77% over baseline (P < 0.05) but remained unchanged in the CCSP-beta(2)-AR mice. Although both groups were hyperreactive to methacholine 6 h after ozone exposure, the ED(200) for ozone-exposed CCSP-beta(2)-AR mice was equivalent to that for unexposed NTG mice. These findings show that epithelial cell beta(2)-ARs regulate airway responsiveness in vivo and that the bronchodilating effect of beta-agonists results from activation of receptors on both epithelial and smooth muscle cells.  相似文献   

19.
A sex disparity in airway responsiveness to cholinergic stimulation has been observed in laboratory mice in that males are considerably more responsive than females, but the basis for this difference is unclear. In this report, we demonstrate that male sex hormones promote murine airway responsiveness to cholinergic stimulation via vagus nerve-mediated reflex mechanisms. In tissue bath preparations, no sex-based differences were observed in the contractile responses of isolated tracheal and bronchial ring segments to carbachol, indicating that the mechanism(s) responsible for the in vivo sex difference is (are) absent ex vivo. Bilateral cervical vagotomy was found to abolish in vivo airway responsiveness to methacholine in male mice, whereas it did not alter the responses of females, suggesting a regulatory role for male sex hormones in promoting reflex airway constriction. To test this possibility, we next studied mice with altered circulating male sex hormone levels. Castrated male mice displayed airway responsiveness equivalent to that observed in intact females, whereas administration of exogenous testosterone to castrated males restored responsiveness, albeit not to the level observed in intact males. Administration of exogenous testosterone to intact female mice similarly enhanced responsiveness. Importantly, the promotive effects of exogenous testosterone in castrated male and intact female mice were absent when bilateral vagotomy was performed. Together, these data indicate that male sex hormones promote cholinergic airway responsiveness via a vagally mediated reflex mechanism that may be important in the regulation of airway tone in the normal and diseased lung.  相似文献   

20.
We hypothesized that short-term variation in airway caliber could be quantified by frequency distributions of respiratory impedance (Zrs) measured at high frequency. We measured Zrs at 6 Hz by forced oscillations during quiet breathing for 15 min in 10 seated asthmatic patients and 6 normal subjects in upright and supine positions before and after methacholine (MCh). We plotted frequency distributions of Zrs and calculated means, skewness, kurtosis, and significance of differences between normal and log-normal frequency distributions. The data were close to, but usually significantly different from, a log-normal frequency distribution. Mean lnZrs in upright and supine positions was significantly less in normal subjects than in asthmatic patients, but not after MCh and MCh in the supine position. The lnZrs SD (a measure of variation), in the upright position and after MCh was significantly less in normal subjects than in asthmatic patients, but not in normal subjects in the supine position and after MCh in the supine position. We conclude that 1) the configuration of the normal tracheobronchial tree is continuously changing and that this change is exaggerated in asthma, 2) in normal lungs, control of airway caliber is homeokinetic, maintaining variation within acceptable limits, 3) normal airway smooth muscle (ASM) when activated and unloaded closely mimics asthmatic ASM, 4) in asthma, generalized airway narrowing results primarily from ASM activation, whereas ASM unloading by increasing shortening velocity allows faster caliber fluctuations, 5) activation moves ASM farther from thermodynamic equilibrium, and 6) asthma may be a low-entropy disease exhibiting not only generalized airway narrowing but also an increased appearance of statistically unlikely airway configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号